|    
[1]  Bae J J, Nakao M.  Existence problem for the Kirchhoff type equation with a localized weakly nonlinear 
dissipation in exterior domains.  Discrete Conti Dyn Sys, 2004, 11(2): 731--743 
 
[2]   Cousin A T, Frota C L, Larkin  N A. Global solvability and decay of the energy  for the nonhomogeneous Kirchhoff equation. Diff Int Equations, 2002, 15(10): 1219--1236 
 
[3]  Kirchhoff G.  Volesungen uber Mechanik. Teubner, 1883 
 
[4]   Lions J L. Exact contorollability, stabilization and perturbation for distributed systems. SIAM Rev, 1988, 30(10): 1--68 
 
[5]  Mochizuki K. Global existence and energy decay of small solutions for the Kirchhoff equation with linear 
dissipation localized near infinity.  Math Ann, 1999, 39: 347--364 
 
[6]  Nakao M.  Stabilization of local energy in an exterior domain for the wave equation with a localized dissipation.  
J Differential Equations,1998, 148:  388--406 
 
[7]  Nakao M.  Global existence of smooth solutions to the initial-boundary value problem for the quasi-linear wave equation with a localized degenerate dissipation.  Nonlinear Analysis, T M A,  2000, 39: 187--205 
 
[8] Nakao M.  Energy  decay for the linear and semilinear wave equations in exterior domains  with some localized 
dissipation.  Math Z, 2001, 238:  781--797 
 
[9]  Nakao M,   Bae J J.  Existence of global solutions to the Cauchy problem of Kirchhoff type quasilinear wave 
equation with weakly nonlinear dissipation.  Funk Ekvac, 2002, 45(3): 387--395 
 
[10]  Yamada  Y.  On some quasilinear wave equation with dissipative terms. Nagoya Math J, 1982, 187: 17--39 
 
[11]  Russell D L. Exact boundary value controllability theorems for wave and heat processes in star-comple-mented regions//Roxin E O, Liu Pan-Tai, Sternberg R L, eds. Differential Games and Control Theory.New York: Marcel Dekker Inc,  1974 
 
[12]   Zuazua E. Exponential decay for the semilinear wave equation with locally distributed damping. Comm Partial Diff Eqs, 1990, 15:  205--235
  |