|    [1]Ambrosetti A, Rabinnowitze P. Dual variational methods in critcal point theory ad applications. J Funct Anal, 1973,14: 327-381 
 [2]Brizes H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving Sobolev critical exponents.Comm Pure Appl Math, 1983,36: 437-477 
 [3]Cherrier P. Meilleures constants dans les inequalities relatives aux espace de Sobolev. Bull Sci Math ze serrie, 1984,108: 154-206 
 [4]Ekeland I. Non-convex minimization problems. BAMSI, 1979. 443-474 
 [5]Grossi M. On some semilinear elliptic equations with critical nonlinearities and mixed boundary conditions.Kend math, Serie VIII, 1990,10: 287-302 
 [6]Grossi M, Pacella F. Positive solution of nonlinear elliptic equation with critical Sobolev exponent and mixed boundary condition. Proc Royal Soc Edinberg, 1990,116A:23-24 
 [7]Huang F M. Existence tow solutions of nonlinear elliptic equations with critical Sobolev exponents and mixed boundary conditions. Proc Royal Soc Edinburgh, 1996 
 [8]Lions P L, Pacella F, Tricarico M. Best constant in Sobolev inequalities for functions vanishing on some part of the boundary related questions. Indiana Univ Math J, 1988,2: 301-324 
 [9]Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann I H P Anal Nonlineaire, 1992,9: 281-304 
 [10]Tarantello G. Multiplicity results for an inhomogeneous Neumann problem With critical exponents. Man-uscripta Math, 1993,18: 57-78 
 [11]Wang X J. Neumann problem of semilinear elliptic equations involving criticalSobolev exponent. J Diff Eq, 1991,93: 283-310 
 [12]Xie Z Q. Multiplicity results for an inhomogeneous nonlinear elliptic problem. Acta Math Sci, 1999,19(2):158-167 
 [13]Xie Z Q. On Neumann problem for some semilinear elliptic equations involving critical Sobolev exponents. 
Acta Math Sci, 1998,18(2):186-196H-equation for generalized kinetic models. Transport Theory and Statistical Physics, 1984, 13(3&4), 341-376
  |