|   [1]  Alexiades V,  Solomon A D. Mathematical Modeling of Melting and Freezing Processes. McGraw-Hill, 1993 
 
[2] Bolotnov I A,  Behafarid F,  Shaver D,  Antal S P, Jansen K E, Samulyak R, Podowski M Z. Interaction of computational tools for multiscale multiphysics simulation of generation-iv reactors//Proceedings of International Congress on Advances in Nuclear Power Plants, 2010. To be published 
 
[3] Caginalp G, Fife P. Higher-order phase field models and detailed anisotropy. Phys Rev B, 1986, 34: 4940--4943 
 
[4]  Caginalp G. Stefan and Hele-Shaw type models as asymptotic limits of the phase field equations. Phys Rev A, 1989, 39: 5887--5896 
 
[5] Du Jian, Fix Brian, Glimm James,  Jia Xicheng, Li Xiaolin, Li Yunhua, Wu Lingling. A simple package for front tracking. J Comput Phys, 2006,  213: 613--628 
 
 
[6] Duderstadt J,  Hamilton L. Nuclear Reactor Analysis. 2nd ed. John Wiley \& Sons, Inc, 1976 
 
[7]  Fix G.//Fasano A,  Promiceiro M, ed. Free Boundary Problems. London: Pitman, 1983: 580 
 
[8] George E,  Glimm J,  Li X L, Li Y H,  Liu X F. The influence of scale-breaking phenomena on turbulent mixing rates. Phys Rev E, 2006, 73: 1--5 
 
[9]  Glimm J,  Grove J W, Li X -L, Shyue K -M, Zhang Q,  Zeng Y. Three dimensional front tracking. SIAM J Sci Comp, 1998, 19: 703--727 
 
[10] Johansen H, Colella P. A cartesian grid embedding boundary method for poisson's equation on irregular domains. J Comput Phys, 1998,  147: 60--85 
 
[11]  Sullivan J M,  Lynch D R, O'Neill K. Finite-element simulation of planare instabilities during solidification of an undercooled melt. J Comput Phys, 1987, 69: 81--111 
 
[12] Juric D, Tryggvason G. A front tracking method for dendritic solidi-fication. J Comput Phys, 1996, 123: 127--148 
 
[13] Langer.//Grinstein  G, Mazenko G, ed. Directions in Condensed Matter Physics. Singapore: Worls Scientific, 1986: 164 
 
[14]  LeVeque R J,   Li Z L. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J  
Numer Anal, 1994, 31: 1019--1044 
 
[15]  Liu X -D, Fedkiw R,  Kang M.  A boundary condition capturing method for poisson's  equation on irregular domains. J Comput Phys, 2000,  160: 151--178 
 
[16] Liu X F,  Li Y H,  Glimm J,  Li X L. A front tracking algorithm for limited mass diffusion. J Comput Phys, 2007, 222: 644--653 
 
[17] Lu T,  Xu Z L, Samulyak R,  Glimm J, Ji X M. Dynamic phase boundaries for compressible fluids. SIAM J Sci Comp, 2008, 30: 895--815 
 
[18]  Mayo A. The fast solution of poisson  and the biharmonic equations on irregular regions. SIAM J Numer Anal, 1984, 21: 285--299 
 
[19]  McCorquodale P,  Colella P, Johansen H. A cartesian grid embedded boundary method for the heat equation on irregular domains. 
J Comput Phys, 2001, 173: 620--635 
[20]  Mckenney A, Mayo A, Greengard L. A fast poisson solver for complex geometries. J Comput Phys, 1995, 118: 348--355 
[21] Perskin Charles S. The immersed boundary method. Acta Numerica, 2002, 11: 479--517 
[22] Samulyak R,  Du J, Glimm J,  Xu Z. A numerical algorithm for MHD of free surface flows at low magnetic reynolds numbers. J Comput Phys, 
2007, 226: 1532--1546 
[23]  Schwartz P, Barad M, Colella P, Ligocki T. A cartesian grid embedded boundary method for the heat equation and Poisson's equation in three dimensions. J Comput Phys, 2006, 211: 531--550 
[24]  Strain  J,  Sethian J. Crystal Growth and dendritic solidification. J Comput Phys, 1992, 98: 231--253 
[25]  Twizell  E H, Gumel A B,  Arigu M A. Second-order, l0-stable methods for the heat equation with time-dependent boundary conditions. Adv Comput Math, 1996, 6: 333 
[26]  Wheeler A A.//Hurle D T J, ed. Handbook of Crystal Growth, Volume 1B.  Amsterdam:  North-Holland, 1993: 783  |