|   [1]  Andreucci D, Teedev A F. A Fujita type result for a degenerate Neumann problem with non compact boundary.   J Math Anal  Appl, 1999, 231: 543--567 
[2]  Bandle C, Levine H A, Zhang Q S. Critical exponents of Fijita type for inhomogeneous parabolic equations and systems. J  Math  Anal  Appl, 2000, 251: 624--648 
[3]  Deng K, Levine H A. The role of critical exponents in blow-up theorems: The sequel. J Math Anal Appl, 2000, 243: 85--126 
[4]  Fujita H. On the blowing up of solutions of  the Cauchy problem for ut=?u+u1+σ. J Fac  Sci Univ  Tokyo Sect  I,   1966, 13: 109--124 
[5]  Galaktionov V A. On conditions for there to be no global solutions of a class of quasilinear parabolic equations. USSR Comp Math and Math  Phys, 1982, 22: 73--90 
[6]  Galaktionov V A. Blow-up for quasi-linear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124: 517--525 
[7]  Hayakawa  K. On the nonexistence of global solutions of some semilinear parabolic differential equations. 
Proc  Japan Acad, 1973, 49: 503--525 
[8]  Kobayashi K, Sirao T, Tanaka H. On the blowing up problem for semilinear heat equations.J Math Soc Japan,    1977, 29: 407--424 
[9]  Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32: 262--288 
[10]  Liu X F, Wang M X. The critical exponent of doubly singular parabolic equations. J Math Anal Appl, 2001, 257: 170--188 
[11]  Qi  Y W. On the equation ut=?uα + uβ . Proc Roy Soc Edinburgh Sect  A, 1993, 123: 373--390 
[12]  Serrin J, Zou H H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math, 2002, 189:  79--142 
[13]  Weissler F B. Existence and nonexistence of global solutions for a semilinear heat equations. Israel J  Math,  1981, 38:  29--40 
[14]  Wu Z Q, Zhao J N, Yi J X, et al. Nonlinear Diffusion Equations. Jinlin: Jinlin University Press, 1996 (in hinese) 
[15]  Ye Q X,  Li Z Y. An Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1994 (in Chinese) 
[16]  Zhao J N. On the Cauchy problem and initial traces for the evolution P-Laplacian equations with strongly nonlinear sources. J Differential Equations, 1995, 121:  329--383 
[17]  Zhang  Q S. Blow-up results for nonlinear parabolic equations on manifolds. Duke Math J, 1999, 97(3): 515--539 
[18]  Zeng X. Blow-up results and global existence of positive solutions for the inhomogeneous evolution P-Laplacian equations. Nonlinear Anal TMA, 2007, 66: 1290--1301 
[19]  Zeng X. Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in  exterior domains. Nonlinear Anal TMA, 2007, 67: 901--916 
[20]  Zeng X. The critical exponents for the quasi-linear parabolic equations with inhomogeneous terms. J Math  Anal Appl, 2007, 332: 1408--1424  |