|   [1]  Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical exponents. Comm Pure Appl Math, 1983, 34: 437--477 
 
[2]  Azorero J G, Alonso I P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans Amer Math Soc, 1991, 323: 877--895 
 
[3]  Ben-Naoum A K, Troestler C, Willem M. Extrema problems with critical Sobolev exponents on unbounded dommains. Nonlinear Analysis, 1996, 26: 823--833 
 
[4]  Bianchi G, Chabrowski J, Szulkin A. On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent. Nonlinear Analysis, 1995, 25: 41--59 
 
[5]  Lions P L. The concentration-compactness principle in the caculus of variation. The limit case. Revista Mat. Iberoamer, 1985, 1: 45--120; 145--201 
 
[6]  Jannelli E. The role played by space dimension in elliptic critical problems. J Differential Equations, 1999, 156:  407--426 
 
[7]  Ferrero A, Gazzola F.Existence of solutions for singular critical growth semilinear elliptic equations. J Differntial Equations, 2001, 177: 494--522 
 
[8]  Ghoussoub N,  Yuan C G. Multiple solutions for quasilinear PDEs involving the critical Sobolev and Hardy exponets. Trans Amer Math Soc, 2000, 352: 5703--5743 
 
[9]  Li S J, Zou W M. Remarks on a class of elliptic problems with critical exponents. Nonlinear Analysis, 1998, 32: 769--774 
 
[10]  Zou W M. On finding sign-changing solutions. J Functional Analysis, 2006, 234: 364--419 
 
[11]  Cao D M, Peng S J. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differential Equations, 2003, 193: 424--434 
 
[12]  Kang D S, Peng S J. Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents. Israel J Mathematics, 2004, 143: 281--297 
 
[13]  Kang D S, Peng S J. Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential. Appl Math Lett, 2005, 15: 1094--1100 
 
[14]  Kang D S, Deng Y B. Existence of solutions for a singular critical elliptic equation. J Math Anal Appl, 2003, 284: 724--732 
 
[15]  Ruiz D, Willem M. Ellipltic problems with critical exponents and Hardy potentials. J Differential Equations, 2003, 190: 524--538 
 
[16]  Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983,  88: 486--490 
 
[17]  Smets D. A concentration-compactness principle lemma with applications to singular eigenvalue problems. J Functional  Analysis, 1999, 167: 463--480 
 
[18]  Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Functional Analysis, 2005, 225: 352--370 
 
[19]  Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBME Regional Conf Ser in Math, No.65, Amer Math Soc, Providence RI, 1986 
 
[20] Willem M. Minimax Theorems. Basel: Birkhauser, 1996  |