|   [1]  Addie R, Mannersalo P, Norros I. Performance formulae for queues with Gaussian input. European Trans Telecommunications, 2002, 13(3): 183--196 
[2]  Adler R J. The Geomentry of Random Fields. New York: Wiley, 1981 
[3]  Anh V V, Angulo J M,  Ruiz-Medina M D. Possible long-range dependence in fractional random fields.J Statist Plann. Inference, 1999, 80: 95--110 
[4]  Benassi A, Bertrand P, Istas J. Identification of the hurst exponent of a step multifractional Brownian motion. Statistical Inference for Stochastic Processes, 2000, 13: 101--111 
[5] Benson D A, Meerschaert M M, Baeumer B. Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour Res, 2006, 42: W01415 
[6]  Bonami A, Estrade A. Anisotropic analysis of some Gaussian models. J Fourier Anal Appl, 2003, 9: 215--236 
[7]  Chen Zhenlong. The properties of the polar sets for Brownian sheet (in Chinese). J  Math (PRC), 1997, 15: 373--378 
[8]  Cheridito P. Gaussian moving averages, semimartingales and option pricing. Stochastic Process Appl, 2004, 109: 47--68 
[9]  Hawkes J. Measures of Hausdorff type and stable processes. Mathematika, 1978, 25: 202--212 
[10]  Houdre C,  Villa  J.  An example of infinite dimensional quasi-helix. Stochastic models (Mexico City), 2002: 195-201, Contemp Math, 2003, 336, Amer  Math Soc, Providence, RI 
[11]  Kahane J P. Points multiples des processus de lévy symétriques restreints â un ensemble de valurs du temps. Orsay:  Sém  Anal  Harm, 1983, 38(2): 74--105 
[12]  Kahane J P. Some Random Series of Functions. 2nd ed. Cambridge University Press, 1985 
[13]  Kakutani S. Two-dimensional Brownian motion and harmonic functions. Proc Imperial Acad, 1944, 20: 706--714 
[14]  Khoshnevisan D. Some polar sets for the Brownian sheet. Sém  de Prob XXXI. Lecture Notes in Mathematics, 1997, 1655: 190--197 
[15]  Mannersalo P,  Norros I. A most probable path approach to queueing systems with general Gaussian input. Comp Networks, 2002, 40(3):  399--412 
[16]  Port S C, Stone C J. Brownian Motion and Classical Potential Theory. New York: Academic Press, 1978 
[17]  Rogers C A. Hausdorff Measures. London: Cambridge University Press, 1970 
[18]  Russo F, Tudor C A. On the bi-fractional Brownian motion. Stoch  Process  Appl, 2006, 5: 830--856 
[19]  Taylor S J, Tricot C. Packing measure and its evaluation for a Brownian path. Trans  Amer Math Soc, 1985, 288: 679--699 
[20]  Taylor S J, Watson N A. A Hausdorff measure classification of polar sets for the heat equation. Math  Proc Camb Philos Soc, 1985, 97: 325--344 
[21]  Testard F. Quelques propri\'{e}t\'es g\'eom\'etriques de certains processus gaussiens. C R  Acad Sc Paris, 1985, 300, Série I : 497--500 
[22]  Testard F. Dimension asym\'etrique et ensembles doublement  non polairs. C R Acad Sc Paris, 1986a, 303, Série I: 579--581 
[23]  Testard F. Polarit\'e, points multiples et géométrie de certain processus gaussiens. Toulouse: Publ du Laboratoire de Statistique et  Probabilit\'es de l'  U P S, 1986b, mars: 1--86 
[24]  Tudor C A,  Xiao Y. Sample path properties of bifractional Brownian motion. Bernoulli, 2007, 13: 1023--1052 
[25]  Xiao Y. Hitting probabilities and polar sets for fractional Brownian motion. Stochastics and Stochastics Reports, 1999, 66: 121--151 
[26]  Xiao Y. Sample path properties of anisotropic Gaussian random fields//Khoshnevisan D, Rassoul-Agha F. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math, 1962. New York: Springer, 2009: 145--212  |