|   [1]  Acerbi E, Fusco N. Partial regularity under anisotropic (p, q) growth conditions. J Diff Equ, 1994, 107(1): 46--67 
[2]  Adams R A. Sobolev spaces. New York-San Francisco-London: Academic Press, 1975 
[3]  Bildhauer M, Fuchs M. Two-dimensional anisotropic variational problems. Calc Variations, 2003, 16:  177--186 
[4]  Bildhauer M, Fuchs M. On the regularity of local minimizers of decomposable variational integrals on domains in R2. Comment Math Univ Carolin, 2007, 48(2): 321--341 
[5]  Bildhauer M, Fuchs M. Higher integrability of the gradient for vectorial minimizers of decomposable variational integrals. Manus Math, 2007, 123: 269--283 
[6]  Bildhauer M, Fuchs M, Zhong X. A regularity theory for scalar local minimizers of splitting-type variational integrals. Ann Scuola Norm Sup Pisa Cl Sci, 2007, 4(5):  385--404 
 
[7]  D'Ottavio A, Leonetti F, Musciano C. Maximum principle for vector valued mappings minimizing variational integrals. Atti Sem Mat Fis Uni Modena, 1998,  66:  677--683 
[8] Esposito L, Leonetti F, Mingione G. Higher integrability for minimizers of integral functionals with (p, q)-growth. J Diff Eq, 1999, 157:  414--438 
[9]  Esposito L, Leonetti F, Mingione G. Regularity for minimizers of functionals with p-q growth. Nonlinear Diff Equ Appl, 1999, 6: 133--148 
[10]  Fusco N, Sbordone C. Some remarks on the regularity of minima of anisotropic integrals. Comm P D E, 1993, 18: 153--167 
[11]  Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann Math Studies 105. Princeton: Princeton University Press,  1983 
[12]  Giaquinta  M. Growth conditions and regularity, a counterexample. Manus Math, 1987, 59: 245--248 
[13]  Marcellini P. Regularity of minimizers of integrals of the  calculus of  variations with non standard growth conditions. Arch Rat Mech Anal, 1989, 105:  267--284 
[14]  Marcellini P. Everywhere regularity for a class of elliptic systems without growth conditions. Ann Scuola Norm Sup Pisa, 1996, 23:  1--25 
[15]  Morrey C B. Multiple integrals in the calculus of variations. Grundlehren der math. Wiss in Einzeldarstellungen 130. Berlin-Heidelberg-New York: Springer, 1966  |