|   [1]  Aizenman M, Simon B. Brownian motion and Harnack's inequality for Schr\"{o}dinger operators. Comm pure Appl Math, 1982, 35: 290--297 
[2]  Brummelhuis R. Three-spheres theorem for second order elliptic equations. J d'Anal Math, 1995, 65: 179--206 
[3]  Carleman T. Sur un problème d'unicitè pour les systèmes dèquations aux derivèes partielles a deux variables independentes. Ark Mat, 1939, 26B: 1--9 
  
[4]  Chiarenza F, Fabes E B, Garofalo N. Harnack's inequality for Schr\"{o}dinger operators and the continuity of solutions. Proc Amer Soc, 1986, 98(3): 415--425 
  
[5]  Canuto B, Rosset E, Vessella S. Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries. Tran Amer Math Soc, 2002, 354(2): 491--535 
 
[6]  Donnelly H, Frfferman C. Nodal sets of eigenfunctions on Riemannian manifolds. Invent Math, 1988, 93: 161--183 
 
[7]  Garofalo N, Lin F H. Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana Univ Math J, 1986, 35: 245--268 
 
[8]  Garofalo N, Lin F H. Unique continuation for elliptic operators: a geometric-variational approach. Comm pure Appl Math, 1987, 40(3): 347--366 
 
[9]  Jerison D, Kenig C E. Unique continuation and absence of positive eigenvalues for Schr\"odinger operators. Annal of Math, 1985, 121: 463--494 
 
[10]  Korevaar J, Meyers J L H. Logarithmic convexity for supremum norms of harmonic functions. Bull London Math Soc, 1994, 26: 353--362 
 
[11]  Kukavica I. Nodal volumes for eigenfunction of analytic regular elliptic problems. J Anal Math, 1995, 67: 269--280 
 
[12]  Kukavica I. Quantitative uniqueness for second-order elliptic operators. Duke Math J, 1998, 91(2): 225--240 
 
[13]  Kurata K. A unique continuation theorem for uniformly elliptic equations with strongly singular potentials. Commun in Partial Differential Equations, 1993, 18(7/8): 1161--1189 
 
[14]  Landis E M. Some problems of the qualitative theory of second order elliptic equation. Russian Math Surveys, 1963, 18: 1--62 
 
[15]  Lin F H. Nodal set of solutions of elliptic and parabolic equations. Comm Pure Appl Math, 1991, 45: 287--308 
 
[16]  Lu G Z, Wolff T. Unique continuation with weak type lower order terms. Potential Anal, 1997, 7(2): 603--614 
 
[17]  Simon B. Schrodinger semigroups. Bull Amer Math Soc, 1982, 7(3): 447--521 
 
[18]  Tao X X. Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields. Studia Mathematica, 2002, 151(1): 31--48 
 
[19]  Tao X X, Zhang S Y. On the unique continuation properties for elliptic operators with singular potentials. Acta Math Sinica, Einglish Series, 2007, 23(2): 297--308 
 
[20]  Tao X X, Zhang S Y. Weighted doubling properties and unique continuation theorems for the degenerate Schrodinger equations with singular potentials. J Math Anal Appl, 2008, 339(1): 70--84 
 
[21]  Tao X X, Zhang S Y. The doubling properties and unique continuations for the weak solutions of parabolic equations with non-smoothness coefficients. Chinese Annals Math, 2006, 27A}(6): 853--864 (in Chinese)  |