|   [1]  Athreya K B, Ney  P E. Branching Process. Berlin: Springer-Verlag, 1972 
 
[2]  Biggins J D, D'Souza J C. The supercritical Galton-Watson processes in varying environments-Heyde norming. Stoch Proc Appl, 1993, 43: 237--249 
 
[3]  Cohn H. Countable non-homogeneous Markov chain: asymptotic behaviour. Adv Appl Prob, 1977, 3: 542--552 
 
[4]  Cohn H, Jagers P. General branching processes in varying environment. Ann Appl Probab, 1994, 4: 184--193 
 
[5]  Coh H. On the asymptotic patterns of supercritical branching processes in varying environments. Ann Appl Probab, 1996, 6: 896--902 
 
[6]  D'Souza J C, Biggins J D. The supercritical Galton-Watson processes in varying environments. Stoch Proc Appl, 1992, 42: 39--47 
 
[7]  D'Souza J C. The rates of growth of the Galton-Watson processes in varying environments. Adv Appl Prob,  1994, 26: 698--714 
 
[8]  Klebaner F C, Schuh  H J. A connection between the limit and the maximum random variable of a branching process in varying environments. J Appl Prob, 1982, 19: 681--684 
 
[9]  Lindvall T. Almost sure convergence of branching processes in varying and random environments. Ann Probab, 1974, 2: 344--346 
 
[10]  Macphee  I M. A Galton-Watson processes in varying environments with essential constant offspring means and two rate of growth. Austral J Statist, 1983, 25: 329--338 
 
[11]  Meyn S P, Tweedie  R L. Markov Chains and Stochastic Stability. Berlin: Springer-Verlag, 1999 
 
[12]  Shieh N R, Yu J H. Dimensions of supercritical branching processes in varying environments. Statistic and Probability Letters, 2004, 70: 299--308  |