|    
[1]  Allard W K. On the first variation of a varifold. Ann  Math, 1972, 95: 225--254 
 
[2] Chen S H, Tan Z.  The method of a-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J Math Anal Appl, 2007, 335(1): 20--42 
 
[3] Chen S H, Tan Z. Optimal interior partial regularity for nonlinear elliptic systems under the natural growth condition: the method of A-harmonic approximation. Acta Math Sci, 2007, 27B(3): 491--508 
 
[4] Chen S H, Tan Z. Partial regularity for weak solutions of stationary Navier-Stokes systems. Acta Math Sci, 2008, 28B(4): 877--894 
 
[5] Campanato S. Equazioni ellitichi del IIe ordine e spazi L2, λ. Ann Mat Pura Appl, 1965, 69: 321--381 
 
[6] Campanato S. Proprieà di une famiglia di spazi funzionali. Ann Sc Norm Super Pisa, 1964, 18: 137--160 
 
[7] Dini D. Sur la méthode des approximations successive pour les équations aux dériées partielles du deuxiéme order. Acta Math, 1902, 25: 185--230 
 
[8] Duzaar F,  Gastel A. Nonlinear elliptic systems with Dini continous coefficients. J Arch Math, 2002, 78: 58--73 
 
[9] Duzaar F, Grotowski J. Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manuscripta Math, 2000, 103: 267--298 
 
[10] Duzaar F, Steffen K. Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. Reine Angew Math, 2002,  546: 73--138 
 
[11]  Giaquinta M. Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton University Press, 1983 
 
[12] Hartman P, Wintner A. On uniform Dini conditions in the theory of linear partial differential equations of elliptic type. Amer J Math, 1955, 77: 329--354 
 
[13] Simon L. Lectures on Geometric Measure Theory. Canberra: Australian National University Press, 1983 
 
[14] Yuan Q B, Tan Z. Optimal interior partial regularity for nonlinear elliptic systems under The natural growth condition with Dini continuous coefficients. Math Study, 2007, 40: 222--247
  |