|    
[1]  Gurney W S C, Blythe S P, Nisbet R M. Nicholson's blowflies revisited. Nature, 1980, 287:  17--21 
 
[2] Liang D, Wu J.  Traveling waves and numerical approximations in a reaction-diffusion equation with nonlocal delayed effect. J Nonlinear Sci, 2003, 13: 289--310 
 
[3] Lin C K, Mei M. On  traveling wavefronts of Nicholson's blowflies equation with diffusion. Proc Royal Soc Edinburgh, 2010, 140A: 135--152 
 
[4] Mei M, So J W-H, Li M Y,  Shen S S P. Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion. Proc Royal Soc Edinbourgh, 2004, 134A: 579--594 
 
[5] Mei M, So J W-H. Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation. Proc Royal Soc Edinburgh, 2008, 138A: 551--568 
 
[6] Nicholson A J.  Competition for foodamongst Lucilia Cuprina larvae//Proceeding of the VIII International Congress of Entomology. Stockholm, 1948: 277--281 
 
[7] Nicholson A J.  An outline of the dynamics of animal populations. Aust J Zool, 1954,  2: 9--65 
 
[8] Ou C, Wu J.  Persistence of wavefronts in delayed non-local reaction-diffusion equations. J Differ Equ, 2007, 235: 219--261 
 
[9] So J W-H, Wu J, Yang Y. Numerical Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation. Appl Math Comp, 2000, 111: 53--69 
 
[10] So J W-H, Yang Y. Direchlet problem for the diffusive Nicholson's blowflies equation. J Differ Equ, 1998, 150: 317--348 
 
[11] So J W-H, Zou X.  Traveling waves for the diffusive Nicholson's blowflies equation. Appl Math Comp, 2001, 122: 385--392 
 
[12]  Thieme H R.  Mathematics in Population Biology. Princeton: Princeton University Press, 2003 
 
[13]  Thieme H, Zhao X Q. Asymptotic speeds of spread and traveling waves for integral equation and delayed reaction-diffusion models. J Differ Equ, 2003, 195: 430--370 
 
[14]  Wu J -H. Theory and Applications of Partial Functional-Differential Equations. Appl Math Sci, Vol  119. New York: Springer-Verlag, 1996 
 
[15]  Wu J Y, Wei D, Mei M. Analysis on critical speed of traveling waves. Appl Math Letters, 2007, 20: 712--718 
 
[16]  Zhao X Q. Dynamical Systems in Population Biology. New York: Springer-Verlag, 2003 
 
[17]  Mo J, Zhang W, He M. Asymptotic method of traveling wave solutions for a class of nonlinear reaction-diffuison equations. Acta Math Sci, 2007, 27B(4): 777--780 
 
[18]  Liu H, Pan T. Pointwise convergence rate of vanishing viscosity approximation for scalar conservation laws with boundary. Acta Math Sci, 2009, 29B(1): 111--128
  |