|   [1]  Bènilan P, Crandall M G, Pierre M. Solutions of the porous medium in RN under optimal conditions on the initial-values. Indiana Univ Math J,  1984, 33: 51--87 
[2]  Bertsch M, Kersner R,  Peletier L A. Positivity versus localization in degenerate diffusion equations. Nonlinear Anal TMA, 1985, 9:  987--1008 
 
[3]  Carrillo J A, Toscani G. Asymptotic L1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ Math J, 2000, 49: 113--141 
 
[4]  Carrillo J A, V\'azquez J L. Asymptotic complexity in filtration equations. J Evolution Equations, 2007, 7: 471--495 
 
[5]  Cazenave T, Dickstein F, Weissler F B. Universal solutions of the heat equation on RN. Discrete Contin Dyn Sys, 2003, 9: 1105--1132 
 
[6]  Cazenave T, Dickstein F, Weissler F B. Nonparabolic asymptotic limits of solutions of the heat equation on RN.  J Dyn Differ Equations,  2007, 19: 789--818 
 
[7]  Cazenave T, Dickstein F, Weissler F B. Chaotic behavior of solutions of the Navier-Stokes system in RN. Adv Differ Equations, 2005, 10:  361--398 
 
[8]  Cazenave T, Dickstein F,  Weissler F B.  A solution of the constant coefficient heat equation on R with exceptional asymptotic behavior: an explicit constuction. J Math Pures Appl, 2006, 85(1): 119--150 
 
[9]  Cazenave T, Dickstein F,  Weissler F B. Multiscale asymptotic behavior of a solution of the heat equation in RN//Nonlinear Differential Equations: A Tribute to D.~G.~de Figueiredo, Progress in Nonlinear Differential Equations and their Applications, Vol 66. Basel: Birkh\"{a}user Verlag, 2005:  185--194 
 
[10]  Cazenave T, Dickstein F,  Weissler F B. Universal solutions of a nonlinear heat equation on RN. Ann Scuola Norm Sup Pisa Cl Sci, 2003, f 5: 77--117 
 
[11]  DiBenedetto E. Continuity of weak solutions to a general porous media equation. Indiana Univ Math J, 1983, 32: 83--118 
 
[12]  DiBenedetto E. Degenerate parabolic equations. New York:  Springer-Verlag, 1993 
 
[13]  Herraiz L. Asymptotic behaviour of solutions of some semilinear parabolic problems.  Ann Inst H Poincar\'e Anal Non Linéaire, 1999, 16: 49--105 
 
[14]  Kamenomostskaya (Kamin) S. The asymptotic behavior of the solution of the filtration equation. Israel J Math, 1973, 14: 76--87 
 
[15]  Kamin S, V\'azquez J L. Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev Mat Iberoamericana, 1988, 4:  339--354 
 
[16]  Kamin S, Peletier L A. Large time behaviour of solutions of the porous medium equation with absorption. Israel J Math, 1986, 55:  129--146 
 
[17]  Lee Ki, Petrosyan A, Vazquez J L. Large-time geometric properties of solutions of the evolution p-Laplacian equation. J Differ  Equs, 2006,  229: 389--411 
 
[18]  V\'azquez  J L. Asymptotic behavior for the porous medium equation in the whole space. J Evolution Equations, 2003, 3: 67--118 
 
[19]  V\ázquez  J L. Smoothing and Decay Estimates for Nonlinear Parabolic Equations, Equations of Porous Medium Type. Oxford: Oxford University Press, 2006 
 
[20]  Vázquez J L, Zuazua E. Complexity of large time behaviour of evolution equations with bounded data. Chin Ann Math Ser B, 2002, 23:  293--310 
 
[21]  Vázquez J L. The Porous Medium Equation, Mathematical Theory, Oxford Mathematical Monographs. Oxford, New York:  The Clarendon 
Press/Oxford University Press, 2007 
 
[22]  Wu Z Q, Yin J X, Li H L,  Zhao J N. Nonlinear Diffusion Equations. Singapore: World Scientific, 2001 
 
[23]  Yin J X, Wang L W, Huang R. Complexity of asymptotic behavior of the porous medium equation in RN. Preprint, 2009 
 
[24]  Zhao J N, Yuan H J. Lipschitz continuity of solutions and interfaces of the evolution p-Laplacian equation. Northeast Math J, 1992, 8(1):   21--37   |