|   [1]  Aluthge A. On p-hyponormal operators for 0<p<1. Integr Equat Oper Th, 1990, 13: 307--315 
 
[2]  Aluthge A, Wang D. w-hyponormal operators. Integr Equat Oper Th, 2000, 36: 1--10 
 
[3]  Ch={o} M, Ito M. Putmnam's inequality for p-hyponormal operators, Proc Amer Math Soc, 1995, 123: 2435--2440 
 
[4] Ch={o} M, Yamazaki T. An operator transform from class A to the class of hyponormal operators and its application. Integr Equat Oper Th, 2005, 53: 497--508 
 
[5]  Fujii M, Jung D, Lee S H, Lee M Y, Nakamoto R. Some classes of operators related to paranormal and log-hyponormal operators. Math Japon, 2000, 51: 395--402 
 
[6]  Furuta T. $A\geq B\geq0$ ensures $(B^rA^pB^r)^\frac{1}{q}\geq B^\frac{p+2r}{q}$ for $r\geq0$, $p\geq0$, $q\geq1$ with $(1+2r)q\geq 
p+2r$. Proc Amer Math Soc, 1987, 101: 85--88 
 
[7]  Furuta T, Ito M, Yamazaki T. A subclass of paranormal operators including class od log-hyponormal and several related classes. Sci Math, 1998, 1(1): 389--403 
 
[8]  Huruya T. A note on p-hyponormal operators. Proc Amer Math Soc, 1997, 125: 3617--3624 
 
[9]  Ito M. Some classes of operators associated with generalized Aluthge transformation. SUT J Math, 1999, 35: 149-165 
 
[10]  Ito M, Yamazaki T. Relations between two inequalities $(B^\frac{r}{2}A^pB^\frac{r}{2})^\frac{r}{p+r}\geq B^r$, and $A^p\geq(A^\frac{p}{2}B^rA^\frac{p}{2})^\frac{p}{p+r}$ and their applications. Integr Equat Oper Th, 2002, 44: 442--450 
 
[11]  Xia D. Spectral theory of hyponormal operators. Basel: Birkhäuser Verlag, 1983 
 
[12]  Yamazaki T. Parallelism between Aluthge transformation and powers of operator. Acta Sci Math (szeged), 2001, 67: 809--820   |