|   [1]  Asmussen S. A probabilistic look at the Wiener-Hopf equation. SIAM Rev, 1998, 40: 189--201 
[2] Asmussen S. Applied Probability and Queues. 2nd ed. New York: Springer, 2003 
[3]  Asmussen S, Foss S, Korshunov D. Asymptotics for sums of random variables with local subexponential behavior. J Theor Prob, 
2003, 16: 489--518 
[4]  Asmussen S, Kalashnikov V, Konstantinides D, et al. A local limit theorem for random walk maxima with heavy tails. Statist Prob Lett, 2002, 56: 399--404 
[5]  Cai J, Garrido J. Asymptotic forms and tails of convolutions of compound geometric distributions, with applications//Chaubey Y P. 
Recent Advances in Statistical Methods. London: Imperial College Press, 2002 
[6]  Cai J, Tang Q. On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J Appl Prob, 2004, 41: 117--130 
 
[7]  Chen G, Wang Y, Cheng F. The uniform local asymptotics of the overshoot of a random walk with heavy-tailed increments. Stochastic Models, 2009, 25: 508--521 
 
[8]  Cline D B H. Convolutions of distributions with exponential and subexponential tails. J Aust Math Soc (Series A), 1987, 43: 347--365 
 
[9]  Cui Z, Wang Y, Wang K. Asymptotics for moments of the overshoot and undershoot of a random walk. Adv Appl Prob, 2009, 41: 469--494 
[10]  Embrechts P, Goldie C M, Veraverbeke N. Subexponentiality and infinite divisibility. Z Wahrscheinlichkeitstheorie und verw Gebiete, 1979, 49: 335--347 
[11]  Embrechts P, Goldie C M. On convolution tails. Stoc Proc Appl, 1982, 13: 263--270 
[12]  Embrechts P, Kl\"{u}ppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance. Berlin: Springer, 1997 
[13]  Feller W. An introduction to probability theory and its applications. Volume 2 (second edition). New York: Wiley, 1971 
[14]  Foss S, Zachary S. The maximum on a random time interval of a random walk with long-tailed increments and negative drift. Ann Appl Prob, 2003, 13: 37--53 
 
[15]  Gao Q, Wang Y. Ruin probability and local ruin probability in the random multi-delayed renewal risk model. Statist Prob Lett, 2009, 79: 588--596 
[16]  Kl\"{u}ppelberg C. Subexponential distributions and characterization of related classes. Probab Theory and Related Fields, 1989, 82: 259--269. 
[17]  Wang Y, Cheng D, Wang K. The closure of a local subexponential distribution class under convolution roots with applications to the 
compound Poisson process. J Appl Prob, 2005, 42: 1194--1203 
[18]  Wang Y, Wang K. Asymptotics for the density of the supremum of a random walk with heavy-tailed increments. J Appl Prob, 2006, 43: 874--879 
[19]  Wang Y, Yang Y, Wang K, et al. Some new equivalent conditions on asymptotics and local asymptotics for random sums and their applications. Insurance Mathematics and Economics, 2007, 40: 256--266 
[20]  Willmot G, Cai J, Lin X S. Lundberg inequalities for renewal equations. Adv Appl Prob, 2001, 33: 674--689 
[21]  Yin C, Zhao J. Nonexponential asymptotics for the solutions of renewal equations, with applications. J Appl Prob, 2006, 43: 815--824 
 
[22]  Yin C, Zhao X, Hu F. Ladder height and supremum of a random walk with applications in risk theory. Acta Mathematica Scientia, 2009,  29A: 38--47  |