|    
[1]  Nicolaides R A. Analysis and convergence of the MAC scheme II: Navier-Stokes equations. SIAM J Numer Anal, 1992, 65(213): 29--44 
 
[2]  Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. New York: Springer-Verlag, 1986 
 
[3] Temam R. Navier-Stokes Equation, Theory and Numerical Analysis. Amstedam, New York: North-Hoolland, 1984 
 
[4]  Thomasset F. Implementation of Finite Element Methods for Navier-Stokes Equations. Berlin: Springer, 1981 
 
[5]  Eymard R, Herbin R. A staggered finite volume scheme on general meshes for the Navier-Stokes Equations in two space dimensions. Int J Finite Volumes, 2005, 2(1) (electronic) 
 
[6]  Douglas J Jr, Santos J E, Sheen D, Ye X. Nonconforming Galerkin methods based on quadrilateral elements for second order 
elliptic problems. RAIRO Math Model Anal Numer, 1999, 33(4): 747--770 
 
[7]  Crouzeix M, Raviart P A. Conforming and nonconforming finite element  methods for solving the stationary Stokes equations. RAIRO Numer Anal, 1973, 7(R-3): 33--76 
 
[8]  Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Meth PDE, 1992, 8(97): 97--111 
 
[9]  Cai Z Q, Douglas J Jr, Ye X. A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo, 1999, 36(4): 215--232 
 
[10]  Li K T, Huang A X, Huang Q H. The  Finite Element Methods and Applications(II). Xi'an: Xi'an Jiaotong University Press, 1987 
 
[11]  Han H D. Nonconforming elements in the mixed finite element method. J Comput Math, 1984, 2(3): 223--233 
 
[12]  Adams R A. Sobolev Spaces. New York: Academic Press, 1975 
 
[13]  Li K T, Zhou L. Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations. Math Numer Sinic, 1995, 17(4): 360--380 
 
[14]  Shi D Y, Ren J C. Nonconforming mixed finite element method for the stationary Conduction-Convection problem.  Inter J Numer Anal Modeling, 2009, 6(2): 293--310 
 
[15]  Ciarlet P G. The Finite Element Method for Elliptic Problems. Amstedam, New York: North-Hoolland, 1978 
 
[16]  Apel T, Nicaise S, Schp\"{o}berl L. Crouzeix-Raviart type finite elements on anisotropic meshes. Numer Math, 2001, 89(2): 193--223 
 
[17]  Ming P B. Nonconforming elements vs locking problem  
[Ph D Thesis]. Beijing: Institute of Computational Mathematics, CAS, 1999 
 
[18]  Hu J. Quadrilateral locking free elements in elasticity  
[Ph D Thesis]. Beijing: Institute of Computational Mathematics, CAS, 2004 
 
[19]  Shi D Y, Mao S P, Chen S C. An anisotropic nonconforming finite element with some superconvergence results. J Comput Math, 2005, 23(3): 261--274 
 
[20]  Lin Q, Tobiska L, Zhou A H. Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation. IMA J Numer Anal, 2005, 25(1): 160--181 
 
[21]  Lee C O, Lee J, Sheen D. A locking-free nonconforming finite element method for planar linear elasticity. Advances Comput Math, 2003, 19(1--3): 277--291 
 
[22]  Wang L H, Qi H. On Locking-free finite element schemes for the pure displacement boundary value problem in the planar linear elasticity. Math Numer Sinica, 2002, 24(2): 243--256 
 
[23]  Shi D Y, Mao S P, Chen S C. A Locking-free anisotropic nonconforming finite element for planar linear elasticity problem. Acta Mathematica Scientia, 2007, 27B(1): 193--202 
 
[24]  He Y N, Wang A W. A simplified two-level method for the steady Navier-Stokes equations. Comput Methods Appl Mech Engrg, 2008, 197(17/18): 1568--1576
  |