|   [1] Amirat Y, Hamdache K, Ziani A. Homog′en′eisation d’′equations hyperboliques du premier ordre – Appli-cation aux milieux poreux. Ann Inst H Poincar′e Anal Non Lin′eaire, 1989, 6(5): 397–417 
 
[2] Amirat Y, Hamdache K, Ziani A. Etude d’une ′equation de transport `a m′emoire. C R Acad Sci Paris S′erI Math, 1990, 311(11): 685–688 
 
[3] Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Interscience Publishers, Inc, 
1948 
 
[4] Dafermos C M. Hyperbolic conservation laws in continuum physics (Grundlehren der Mathematischen 
Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Berlin: Springer-Verlag, 2000; 
Second edition, Berlin: Springer-Verlag, 2005 
 
[5] DiPernaRJ.The structureofsolutionstohyperbolic conservation laws//Nonlinearanalysisand mechanics: 
Heriot-Watt Symposium, Vol IV. Res Notes in Math, 39. Boston, Mass London: Pitman, 1979: 1–16 
 
[6] DiPerna R J. Convergence of approximate solutions to conservation laws. Arch Rational Mech Anal, 1983, 
82(1): 27–70 
 
[7] Feynman R. Surely you’re joking, Mr. Feynman!. Vintage UK, 1992 
 
[8] Hopf E. On the right weak solution of the Cauchy problem for a quasilinear equation of first order. J Math 
Mech, 1969/1970, 19: 483–487 
 
[9] Lax P D. Hyperbolic systems of conservation laws II. Comm Pure Appl Math, 1957, 10: 537–566 
 
[10] Lax P D. Invariant functionals of nonlinear equations of evolution//Proc Internat Conf on Functional Analysis and Related Topics (Tokyo, 1969). Tokyo: Univ of Tokyo Press, 1970: 240–251 
 
[11] Lax P D. Shock waves and entropy//Contributions to Nonlinear Functional Analysis (Proc Sympos, Math 
Res Center, Univ Wisconsin, Madison, Wis, 1971). New York: Academic Press, 1971: 603–634 
 
[12] NishidaT.Nonlinearhyperbolic equations andrelated topicsinfluiddynamics. Publications Math′ematiques 
d’Orsay, No 78-02. D′epartement de Math′ematique, Universit′e de Paris-Sud, Orsay, 1978 
 
[13] Serre D. Syst`emes de lois de conservation. I. Hyperbolicit′e, entropies, ondes de choc. Fondations. [Foun- 
dations] Paris: Diderot Editeur, 1996; Systems of conservation laws. 1. Hyperbolicity, entropies, shock 
waves (Translated from the 1996 French original by I. N. Sneddon). Cambridge: Cambridge University Press, 1999 
 
[14] Serre D. Syst`emes de lois de conservation. II. [Systems of conservation laws. II] Structures g′eom′etriques, oscillation et probl`emes mixtes. Fondations. [Foundations] Diderot Paris: Editeur, 1996; Systems of 
conservation laws. 2. Geometric structures, oscillations, and initial-boundary value problems (Translated from the 1996 French original by I. N. Sneddon). Cambridge: Cambridge University Press, 2000 
 
[15] SmollerJ.Shock Waves andReaction-Di?usion Equations. Grundlehren derMathematischen Wissenschaften 
 
[Fundamental Principles of Mathematical Science], Vol 258. New York: Springer-Verlag, 1983 
 
[16] Tartar L. Nonlinear constitutive relations and homogenization//Contemporary Developments in Contin- 
uum Mechanics and Partial Di?erential Equations (Proc Internat Sympos, Inst Mat, Univ Fed Rio de Janeiro, Rio de Janeiro, 1977). North-Holland Math Stud, 30. Amsterdam, New York: North-Holland, 1978: 472–484 
 
[17] Tartar L. Equations hyperboliques non lin′eaires. S′eminaire Goulaouic–Schwartz (1977/1978), Exp No 18. Ecole′Polytech, Palaiseau, 1978 
 
[18] Tartar L. Compensated compactness and applications to partial di?erential equations//Nonlinear Analysis 
and Mechanics: Heriot-Watt Symposium, Vol IV. Res Notes in Math, 39. Boston, Mass London: Pitman, 1979: 136–212 
 
[19] Tartar L. Remarks on Homogenization. Homogenization and Effective Moduli of Materials and Media. 
The IMA Volumes in Mathematics and its Applications, Vol 1. New York: Springer, 1986: 228–246 
 
[20] Tartar L. Une introduction `a la th′eorie math′ematique des syst`emes hyperboliques de lois de conservation. Publicazioni 682, Istituto di Analisi Numerica, Pavia, 1989 
 
[21] Tartar L. Nonlocal e?ects induced by homogenization//Partial Di?erential Equations and the Calculus of 
Variations. Essays in Honor of Ennio De Giorgi II. Boston: Birkha¨user, 1989: 925–938 
 
[22] Tartar L. Memory effects and homogenization. Arch Rat Mech Anal, 1990, 111(2): 121–133 
 
[23] Tartar L. H-measures, a new approach for studying homogenisation, oscillations and concentration effects 
in partial di?erential equations. Proc Roy Soc Edinburgh Sect A, 1990, 115(3/4): 193–230 
 
[24] Tartar L. H-measures and small amplitude homogenization//Random Media and Composites (Leesburg, 
VA, 1988). Philadelphia, PA: SIAM, 1989: 89–99 
 
[25] Tartar L. Beyond Young measures. Meccanica, 1995, 30: 505–526 
 
[26] Tartar L. Remarks on the homogenization method in optimal design problems//Homogenization and 
Applications to Material Sciences. Proc Nice 1995, Gakuto Int Series, Math Sciences and Applications Vol 
9. Tokyo, Japan: Gakkokotosho, 1997: 393–412 
 
[27] Tartar L. An Introduction to the homogenization method in optimal design. Optimal Shape Design, Tr′oia, 
Portugal, 1998: 47–156 Lecture Notes in Math, Vol 1740. Fondazione CIME. Berlin: Springer-Verlag; Centro Internazionale Matematico Estivo, Florence, 2000 
 
[28] Tartar L. Compensation e?ects in partial di?erential equations. Rend Accad Naz Sci XL Mem Mat Appl 
(5), 2005, 29(1): 395–453 
 
[29] Tartar L. From Hyperbolic Systems to Kinetic Theory, A Personalized Quest. Lecture Notes of the Unione 
Matematica Italiana, 6. Berlin Heidelberg: Springer/Bologna: UMI, 2008 
 
[30] Tartar L. The General Theory of Homogenization: A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7. Heidelberg: Springer Berlin/Bologna: UMI, 2010 
 
[31] Truesdell C A. Rational Thermodynamics. New York: McGraw-Hill, 1969  |