|   [1] Lions P L, Masmoudi N. Incompressible Limit for a Viscous Compressible Fluid. J Math Pures Appl, 1998, 77: 585–627 
 
[2] Desjardins B, Grenier E, Lions P L, Masmoudi N. Incompressible Limit for Solutions of the Isentropic Navier-Stokes Equations with Dirichlet Boundary Conditions. J Math Pures Appl, 1999, 78: 461–471 
 
[3] Desjardins B, Grenier E. Low Mach Number Limit of Viscous Compressible Flows in the Whole Space. Proc R Soc Lond A, 1999, 455: 2271–2279 
 
[4] Majda A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied 
Mathematical Sciences, 53, 1984 
 
[5] Lions P L. Mathematical Topics in Fluid Dynamics. Vol 2. Compressible models. Oxford: Oxford Science Publication, 1998 
 
[6] Temam R. Navier-Stokes Equations. Rev Ed. Studies in Mathematics and its Applications 2. North-Holland: Amsterdam, 1977 
 
[7] Garofalon N, Seg`ala F. Another step toward the solution of the Pompeiu problem in the plane. Comm Partial Differential Equations, 1993, 18: 491–503 
 
[8] Evans L C. Partial Differential Equations//Graduate Studies in Mathematics 19. Providence: Amer Math Soc, 1998 
 
[9] Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press, 2004 
 
[10] Chu Y M, Hao Y H, Liu X G. Global Weak Solutions to a General Liquid Crystals System. Discrete and Continuous Dynamical System -A, 2013, 33: 2681–2710 
 
[11] Liu X G, Qing J. Globally Weak Solutions to the Flow of Compressible Liquid Crystals System. Discrete and Continuous Dynamical System -A, 2013, 33: 757–788  |