|   [1] Adams R A. Sobolev Space. New York:Academic Press, 1975 
[2] Baker G A. Galerkin approximations for the Navier-Stokes equations. Technical Report, 1976 
[3] Bank R E, Rose D J. Analysis of a multilevel interative method for nonlinear finite element equations. Math Comput, 1982, 39:453-465 
[4] Cannon J R, Ewing R E, He Y N, Lin Y P. A modified nonlinear Galerkin method for the viscoelastic fluid motion equations. Inter J Eng Sci, 1999, 37:1643-1662 
[5] Ciarlet P. The Finite Element Method for Elliptic Problems. New York:North-Holland, 1978 
[6] Dembo R S, Eisenstat S C, Steihaug T. Inexact Newton methods. SIAM J Numer Anal, 1982, 19:400-408 
[7] Dennis Jr J E, Moré Jorge J. Quasi-Newton methods. Numer Math, 1968, 11:324-330 
[8] Dennis Jr J E, Moré Jorge J. A characterization of superlinear convergence and its application to quasi-Newton methods. Math Comput, 1974, 28:549-560 
[9] Douglas Jr J, Dupont T. Galerkin methods for parabolic equations. SIAM J Numer Anal, 1970, 7:575-626 
[10] Douglas Jr J, Dupont T. A Galerkin method for a nonlinear Dirichlet problem. Math Comput, 1975, 29:689-696 
[11] Gilbarg D, Trudinger N. Elliptic Partial Differential Equations of Second Order. New York:Springer-Verlag, 1983 
[12] Grisvard P. Elliptic Problem in Nonsmooth Domains. Boston, MA:Pitman, 1985 
[13] He Y N. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J Numer Anal, 2003, 41:1263-1285 
[14] He Y N, Sun W W. Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J Numer Anal, 2007, 45(2):837-869 
[15] He Y N, Li J. Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Comput. Methods Appl Mech Engrg, 2009, 198:1351-1359 
[16] Heywood J G, Rannacher R. Finite-element approximations of the nonstationary Navier-Stokes problem, Part IV:Error estimates for second-order time discretization. SIAM J Numer Anal, 1990, 27:353-384 
[17] Johnston H, Liu J G. Accurate, stable and efficient Navier-Stokes slovers based on explicit treatment of the pressure term. J Comput Phys, 2004, 199:221-259 
[18] Labovsky A, Layton W J, Manica C C, Neda M, Rebholz L G. The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations. Comput Methods Appl Mech Engrg, 2009, 198:958-974 
[19] Marion M, Temam R. Navier-Stokes Equations:Theory and Approximation. Handb. Numer. Anal. VI, Amsterdam:North-Holland, 1998:503-688 
[20] Rannacher R, Scott R. Some optimal error estimates for piecewise linear finite element approximation, Math Comput, 1982, 38:437-445 
[21] Rodenkirchen J. Maximum L2-convergence rates of the Crank-Nicolson scheme to the Stokes initial value problem. SIAM J Numer Anal, 2007, 45:484-499 
[22] Schartz A. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math Comput, 1974, 28:959-962 
[23] Thomée V. Galerkin Finite Element Methods for Parabolic Problems. Berlin:Springer-Verlag, 1997 
[24] Thomée V, Xu J C, Zhang N Y. Superconvergence of gradient in piecewise linear finite element approxi-mation to a parabolic problem. SIAM J Numer Anal, 1989, 26:553-573 
[25] Tone F. Error analysis for a second scheme for the Navier-Stokes equations. Appl Numer Math, 2004, 50:93-119 
[26] Wen J, He Y N, Wang X M, Huo M H. Two-level multiscale finite element methods for the steady Navier-Stokes problem. Acta Math Sci, 2014, 34B(3):960-972 
[27] Xu J C. A novel two-grid method for semilinear elliptic equations. SIAM J Sci Comput 1994, 15:231-237 
[28] Xu J C. Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J Numer Anal, 1996, 33:1759-1777  |