|   [1] Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans Inform Theory, 1992, 38(2):910-917 
[2] Abry P, Flandrin P, Taqqu M S, et al. Self-similarity and long-range dependence through the wavelet lens. Theory and Applications of Long-Range Dependence, 2003:527-556 
[3] Abry P, Helgason H, Pipiras V. Wavelet-based analysis of non-Gaussian long-range dependent processes and estimation of the hurst parameter. Lithuanian Mathematical Journal, 2011, 51(3):287-302 
[4] Kamont A. On the fractional anisotropic Wiener field. Probability and Mathematical Statistics-PWN, 1996, 16(1):85-98 
[5] Pesquet-Popescu B, Vehel J L. Stochastic fractal models for image processing. IEEE Signal Processing Magazine, 2002, 19(5):48-62 
[6] Biermé H, Meerschaert M M, Scheffler H P. Operator scaling stable random fields. Stoch Proc Appl, 2007, 117(3):312-332 
[7] Bonami A, Estrade A. Anisotropic analysis of some Gaussian models. J Fourier Anal Appl, 2003, 9(3):215-236 
[8] Doukhan P, Oppenheim G, Taqqu M S. Theory and Applications of Long-Range Dependence. Springer, 2003 
[9] Wu D, Xiao Y. Geometric properties of fractional Brownian sheets. J Fourier Anal Appl, 2007, 13(1):1-37 
[10] Atto A M, Berthoumieu Y, Bolon P. 2-D Wavelet packet spectrum for texture analysis. IEEE Trans Image Proc, 2013, 22(6):2495-2500 
[11] Roux S G, Clausel M, Vedel B, et al. Self-similar anisotropic texture analysis:the hyperbolic wavelet transform contribution. IEEE Trans Image Proc, 2013, 22(11):4353-4363 
[12] Biagini F, Hu Y, Øksendal B, et al. Stochastic Calculus for Fractional Brownian Motion and Applications. London:Springer, 2008 
[13] Moseley M. Diffusion tensor imaging and aging a review. NMR in Biomedicine, 2002, 15(7/8):553-560 
[14] Amblard P O, Coeurjolly J F. Identification of the multivariate fractional Brownian motion. IEEE Trans Signal Proc, 2011, 59(11):5152-5168 
[15] Coeurjolly J F, Amblard P O, Achard S. Wavelet analysis of the multivariate fractional Brownian motion. ESAIM:Prob Stat, 2013, 17:592-604 
[16] Wu L, Ding Y. Estimation of self-similar Gaussian fields using wavelet transform. International Journal of Wavelets, Multiresolution and Information Processing, 2015, 13(6):1550044 
[17] Bardet J M. Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans Inform Theory, 2002, 48(4):991-999 
[18] Morales C J. Wavelet-Based Multifractal Spectra Estimation:Statistical Aspects and Applications[D]. Boston University, 2002 
[19] Bardet J M. Testing for the presence of self-similarity of Gaussian time series having stationary increments. J Time Series Anal, 2000, 21(5):497-515 
[20] Mandelbrot B, Van Ness J. Fractional Brownian motions, fractional noises and applications. SIAM Review, 1968, 10(4):422-437 
[21] Hu Y. Heat equations with fractional white noise potentials. Appl Math Opt, 2001, 43(3):221-243 
[22] Brouste A, Istas J, Lambert-Lacroix S. On fractional Gaussian random fields simulations. J Stat Software, 2007, 23(1):1-23 
[23] Basu A K. Measure Theory and Probability. PHI Learning Pvt Ltd, 2004 
[24] Arcones M A. Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann Prob, 1994, 22(4):2242-2274 
[25] Serfling R J. Approximation Theorems of Mathematical Statistics. John Wiley & Sons, 1980 
[26] Van der Vaart A W, Wellner J A. Weak Convergence and Empirical Processes. New York:Springer, 1996 
[27] Goswami J C, Chan A K. Fundamentals of Wavelets:Theory, Algorithms, and Applications. John Wiley & Sons, 2011 
[28] Bardet J M, Lang G, Oppenheim G, et al. Semi-parametric estimation of the long-range dependence parameter:a survey. Theory and Applications of Long-Range Dependence, 2003:557-577 
[29] Tewfik A H, Kim M. Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans Inform Theory, 1992, 38(2):904-909 
[30] Dijkerman R W, Mazumdar R R. On the correlation structure of the wavelet coefficients of fractional Brownian motion. IEEE Trans Inform Theory, 1994, 40(5):1609-1612 
[31] Aitken A C. On least squares and linear combinations of observations. Proc Royal Soc Edinburgh, 1935, 55:42-48 
[32] Davies R B, Harte D. Tests for Hurst effect. Biometrika, 1987, 74(1):95-101 
[33] Kroese D P, Botev Z I. Spatial process generation. arXiv preprint arXiv:1308.0399, 2013  |