[1] Arbogast T, Brunson D S. A computational method for approximating a Darcy-Stokes system poverning a vuggy porous medium. Comput Geosci, 2007, 11:207-218 [2] Arbogast T, Gomez M S M. A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput Geosci, 2009, 13(3):331-348 [3] Arbogast T, Lehr H L. Homogenization of a Darcy-Stokes system modeling vuggy porous media. Comput Geosci, 2006, 10(3):291-302 [4] Cao Y, Gunzburger M, Hu X, Hua F, Wang X, Zhao W. Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions. SIAM J Numer Anal, 2010, 47(6):4239-4256 [5] Cao Y, Gunzburger M, Hua F, Wang X. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun Math Sci, 2010, 8(1):1-25 [6] Mu M, Xu J C. A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J Numer Anal, 2007, 45:1801-1813 [7] Ervin V J, Jenkins E W, Sun S. Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J Numer Anal, 2009, 47(2):929-952 [8] Moraiti M. On the quasistatic approximation in the Stokes-Darcy model of groundwater-surface water flows. J Math Anal Appl, 2012, 394(2):796-808 [9] Cai M, Mu M, Xu J. Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J Numer Anal, 2009, 47(5):3325-3338 [10] Badea L, Discacciati M, Quarteroni A. Numerical analysis of the Navier-Stokes/Darcy coupling. Numerische Mathematik, 2010, 115(2):195-227 [11] Çeşmelioǧlu A, Riviére B. Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J Numer Mathem, 2008, 16(4):249-280 [12] Çeşmelioǧlu A, Riviére B. Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J Sci Comput, 2009, 40(1/3):115-140 [13] Chidyagwai P, Riviére B. On the solution of the coupled Navier-Stokes and Darcy equations. Comput Methods Appl Mech Engin, 2009, 198(47/48):3806-3820 [14] Girault V, Riviére B. DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-JosephSaffman interface condition. SIAM J Numer Anal, 2009, 47(3):2052-2089 [15] Hou Y. Optimal Error Estimates of A Decoupled Scheme Based on Two-Grid Finite Element for Mixed Stokes-Darcy Model. Appl Math Lett, 2016, 57:90-96 [16] Beavers G, Joseph D. Boundary conditions at a naturally permeable wall. J Fluid Mech, 1967, 30:197-207 [17] Discacciati M, Miglio E, Quarteroni A. Mathematical and numerical models for coupling surface and groundwater flows. Appl Numer Math, 2002, 43:57-74 [18] Jäger W, Mikelíc A. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J Appl Math, 2000, 60:1111-1127 [19] Layton W. A two-level discretization method for the Navier-Stokes equations. Comput Math Appl, 1993, 26:33-38 [20] Nield D A, Bejan A. Convection in Porous Media. New York:Springer-Verlag, 1999 [21] Saffman P. On the boundary condition at the surface of a porous media. Stud Appl Math, 1971, 50:93-101 [22] Cai M C. Modelling and Numerical Simulation for the Coupling of Surface Flow with Subsurface Flow[D]. HongKong:The Hong Kong University of Science and Technology, 2008 [23] Discacciati M, Quarteroni A. Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput Vis Sci, 2004, 6:93-103 [24] Quarteroni A, Valli A. Domain Decomposition Methods for Partial Differential Equations. Oxford:Oxford University Press, 1999 [25] Shan L, Zheng H B, Layton W J. A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer Methods Partial Differ Eqns, 2013, 29:549-583 [26] Shan L, Zheng H B. Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions. SIAM J Numer Anal, 2013, 51:813-839 [27] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York:Springer-Verlag, 1991 [28] Zuo L, Hou Y. A decoupling two-grid algorithm for the mixed Stokes-Darcy model with the Beavers-Joseph interface condition. Numerical Methods for Partial Differential Equations, 2014, 30(3):1066-1082 [29] Zuo L, Hou Y. A two-grid decoupling method for the mixed Stokes-Darcy model. J Comput Appl Math, 2015, 275:139-147 [30] Zuo L, Hou Y. Numerical analysis for thr mixed Navier-Stokes and Darcy problem with the Beavers-Joseph interface condition. Numer Methods Partial Differ Equ, 2015, 31(4):1009-1030 [31] Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Berlin:Springer-Verlag, 1986 [32] Du G, Zuo L. Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Methematica Scientia, 2017, 37B(5):1331-1347 |