[1] Auerbach H. Sur un Problème de M. Ulam Concernant l'Equilibre des Corps Flottants. Stud Math, 1938,  7: 121-142  [2] Bárány I, Larman D G. Convex bodies, economic cap coverings, random polytopes. Mathematika, 1988,  35(2): 274-291  [3] Blaschke W. Vorlesung Über Differentialgeometrie II: Affine Differntialgeometrie. Berlin: Springer-Verlag, 1923  [4] Besau F, Werner E. The spherical convex floating body. Adv Math, 2016,  301: 867-901  [5] Besau F, Werner E. The floating body in real space forms. J Differential Geom, 2018,  110: 187-220  [6] Bracho J, Montejano L, Oliveros D. Carousels, Zindler curves and the floating body problem. Per Mat Hungarica, 2004,  2(49): 9-23  [7] Caglar U, Werner E. Divergence for $s$-concave and log-concave functions. Adv Math, 2014,  257: 219-247  [8] Caglar U, Werner E. Mixed $f$-divergence and inequalities for log-concave funtions. Proc London Math Soc, 2015,  110: 271-290  [9] Caglar U, Fradelizi M, Guédon O, et al. Functional versions of $L_p$-affine surface area and entropy inequalities. Int Math Res Not, 2016,  4: 1223-1250  [10] Dupin C. Application de géométrie et de méchanique. Paris, 1822  [11] Falconer K. Applications of a result on spherical integration to the theory of convex sets. Amer Math Monthly, 1983,  90: 690-69  [12] Florentin D, SchÜtt C, Werner E, Zhang N. Convex floating bodies of equilibrium. Proc Amer Math Soc, 2022,  150: 3037-3048  [13] Gruber P M. Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math, 1993,  5: 521-538  [14] Hug D. Contributions to affine surface area. Manuscripta Math, 1996,  91: 283-301  [15] Huang H, Slomka B A. Approximations of convex bodies by measure-generated sets. Geom Dedicata, 2019, 200: 173-19  [16] Huang H, Slomka B A, Werner E. Ulam floating bodies. J London Math Soc, 2019,  100: 425-446  [17] Kiener K. Extremailtät von Ellipsoiden und die Faltungsungleichung von Sobolev. Arch Math, 1986, 46: 162-168  [18] Li B, SchÜtt C, Werner E. Floating functions. Israel J Math, 2019,  231: 181-210  [19] Liu C, Werner E, Ye D, Zhang N. Ulam floating functions. J Geom Anal, 2023,  33: 1-25  [20] Leichtweiss K. Über ein Formel Blaschkes zur Affinoberfäche. Studia Scient Math Hung, 1986,  21: 453-474  [21] Leichtweiss K. Zur Affinoberfläche konvexer Körper. Manuscripta Mathematica, 1986,  56: 429-464  [22] Ludwig M, Reitzner M. A characterization of affine surface area. Adv Math, 1999,  147: 138-172  [23] Ludwig M. General affine surface areas. Adv Math, 2010,  224: 2346-2360  [24] Lutwak E. Extended affine surface area. Adv Math, 1991,  85: 39-68  [25] Lutwak E. The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv Math, 1996,  118: 244-294  [26] McClure D, Vitale R. Polygonal approximation of plane convex bodies. J Math Anal Appl, 1975,  51: 326-358  [27] Meyer M, Werner E. The Santaló-regions of a convex body. Trans Amer Math Soc, 1998,  350: 4569-4591  [28] Meyer M, Werner E. On the $p$-affine surface area. Adv Math, 2000,  152: 288-313  [29] Petty C. Isoperimetric problems// Proc Conf Convexty and Combinatorial Geometry, University of Oklahoma, Norman, Okla. 1972: 26-41  [30] Ryabogin D. A negative answer to Ulam's problem 19 from the Scottish Book. Ann Math, 2022,  195: 1111-1150  [31] Ryabogin D. On bodies floating in equilibrium in every orientation. Geom Dedicata, 2023, 217: Art 70  [32] Schneider R. Functional equations connected with rotations and their geometric applications. Enseign Math, 1970,  16: 297-305  [33] Schneider R. Convex Bodies: The Brunn-Minkowski Theory, Cambridge: Cambridge Univ Press, 2014  [34] Schütt C, Werner E. The convex floating body. Math Scand, 1990,  66: 275-290  [35] SchÜtt C. The convex floating body and polyhedral approximation. Israel J Math, 1991,  73: 65-77  [36] Schütt C. On the affine surface area. Proc Am Math Soc, 1993,  118: 1213-1218  [37] SchÜtt C, Werner E. Polytopes with vertices chosen randomly from the boundary of a convex body// Geometric Aspects of Functional Analysis: lsrael Seminar. Berlin: Springer, 2003: 241-422  [38] Schütt C, Werner E. Surface bodies and $p$-affine surface area. Adv in Math, 2004,  187: 98-145  [39] SchÜtt C, Werner E. Homothetic floating bodies. Geom Dedicata, 1994,  49: 335-348  [40] Schütt C, Werner E. Floating Bodies. Book in preparation, to be published by the AMS.  [41] Schmuckenschläger M. The distribution function of the convolution square of a convex symmetric body in $\mathbb{R}^n$. Israel J Math, 1992,  78: 309-334  [42] Stancu A. Two volume product inequalities and their applications. Canad math Bull, 2009,  52: 464-472  [43] Stancu A. The floating body problem. Bull London Math Soc, 2006,  38: 839-846  [44] Ulam S. A Collection of Mathematical Problems. New York: Interscience Publishers, 1960  [45] Wegner F. Floating bodies of equilibrium. Stud Appl Math, 2003,  111: 167-183  [46] Wegner F. Floating bodies in equilibrium in $2D$, the tire track problem and electrons in a parabolic magnetic fields. arXiv:physics/0701241v3  [47] Wegner F. Floating bodies of equilibrium in three dimensions. The central symmetric case. arXiv:0803.1043  [48] Werner E. The $p$-affine surface area and geometric interpretations. Rend Circ Math Palermo Serie II, 2002,  70: 367-382  [49] Werner E, Ye D. New $L_p$ affine isoperimetric inequalities. Adv Math, 2008,  218: 762-780  [50] Werner E, Ye D. On the homothety conjecture. Indiana University Mathematics Journal, 2011,  60: 1-20  [51] Zhang G. Restricted chord projection and affine inequalities. Geom Dedicata, 1991,  39: 213-222 |