[1] Ahn J, Yoon C W. Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing. Nonlinearity, 2019, 32(4): 1327-1351 [2] Alikakos N D. $ L^p $ bounds of solutions of reaction-diffusion equations. Comm Partial Differential Equations, 1979, 4(8): 827-868 [3] Amann H. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differential Integral Equations, 1990, 3(1): 13-75 [4] Amann H.Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.//Schmeisser H J, Triebel Hans. Function Spaces, Differential Operators and Nonlinear Analysis. Wiesbaden: Springer, 1993: 9-126 [5] Cao X. Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z Angew Math Phys, 2016, 67: Art 11 [6] Desvillettes L, Kim Y J, Trescases A, Yoon C W. A logarithmic chemotaxis model featuring global existence and aggregation. Nonlinear Anal Real World Appl, 2019, 50: 562-582 [7] Freitag M. Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems. J Math Anal Appl, 2018, 463(2): 964-988 [8] Fujie K, Jiang J. Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities. Calc Var Partial Differential Equations, 2021, 60(3): Art 92 [9] Fujie K, Jiang J. Global existence for a kinetic model of pattern formation with density-suppressed motilities. J Differential Equations, 2020, 269(6): 5338-5378 [10] Jin H Y, Kim Y J, Wang Z A. Boundedness, stabilization and pattern formation driven by density-suppressed motility. SIAM J Appl Math, 2018, 78(3): 1632-1657 [11] Jin H Y, Wang Z A. Critical mass on the Keller-Segel system with signal-dependent motility. Proc Amer Math Soc, 2020, 148(11): 4855-4873 [12] Jin H Y, Wang Z A. Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion. European J Appl Math, 2021, 32(4): 652-682 [13] Jin H Y, Wang Z A. Global stability of prey-taxis systems. J Differential Equations, 2017, 262(3): 1257-1290 [14] Juchem Neto J, Claeyssen J. Capital-induced labor migration in a spatial solow model. Journal of Economics, 2015, 115: 25-47 [15] Ke Y, Zheng J. An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation. Calc Var Partial Differential Equations, 2019, 58: 1-27 [16] Keller E F, Segel L A. Model for chemotaxis. Journal of Theoretical Biology, 1971, 30: 225-234 [17] Le M. Global existence of solutions to the chemotaxis system with logistic source under nonlinear Neumann boundary conditions. J Differential Equations, 2023, 377: 1-37 [18] Li B, Li Y. On a chemotaxis-type Solow-Swan model for economic growth with capital-induced labor migration. J Math Anal Appl, 2022, 511(2): Art 126080 [19] Li D, Wu C. Effects of density-suppressed motility in a two-dimensional chemotaxis model arising from tumor invasion. Z Angew Math Phys, 2020, 71(5): Art 153 [20] Li X. Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function. Z Angew Math Phys, 2020, 71: Art 117 [21] Li X, Xiang Z. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete Contin Dyn Syst, 2015, 35(8): 3503-3531 [22] Liu X, Zheng J. Convergence rates of solutions in apredator-prey system with indirect pursuit-evasion interaction in domains of arbitrary dimension. Discrete Contin Dyn Syst Series B, 2023, 28(3): 2269-2293 [23] Liu Z, Xu J. Large time behavior of solutions for density-suppressed motility system in higher dimensions. J Math Anal Appl, 2019, 475(2): 1596-1613 [24] Lou Y, Winkler M. Global existence and uniform boundedness of smooth solutions to a cross-diffusion system with equal diffusion rates. Comm Partial Differential Equations, 2015, 40(10): 1905-1941 [25] Lyu W, Wang Z A. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv Nonlinear Anal, 2013, 12(1): 336-355 [26] Ma M, Peng R, Wang Z A. Stationary and non-stationary patterns of the density-suppressed motility model. Phys D, 2020, 402: Art 132259 [27] Mizoguchi N, Souplet P. Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann Inst H Poincaré Anal Non Linéaire, 2014, 31(4): 851-875 [28] Peng R, Wu Y. Global $ L^\infty $-bounds and long-time behavior of a diffusive epidemic system in a heterogeneous environment. SIAM J Math Anal, 2021, 53(3): 2776-2810 [29] Quittner P, Souplet P.Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States. Basel: Birkhäuser, 2007 [30] Tao Y, Wang Z A. Competing effects of attraction vs. repulsion in chemotaxis. Math Models Methods Appl Sci, 2013, 23(1): 1-36 [31] Tao Y, Winkler M. A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source. SIAM J Math Anal, 2011, 43(2): 685-704 [32] Tao Y, Winkler M. Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system. Z Angew Math Phys, 2016, 67: Art 138 [33] Tao Y, Winkler M. Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math Models Methods Appl Sci, 2017, 27(9): 1645-1683 [34] Wang J, Wang M. Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth. J Math Phys, 2019, 60(1): Art 011507 [35] Wang Z A, Xu X. Steady states and pattern formation of the density-suppressed motility model. IMA J Appl Math, 2021, 86(3): 577-603 [36] Wang Z A, Zheng J. Global boundedness of the fully parabolic Keller-Segel system with signal-dependent motilities. Acta Appl Math, 2021 171: Art 25 [37] Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248(12): 2889-2905 [38] Winkler M. Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotation flux components. J Evol Eqn, 2018, 18(3): 1267-1289 [39] Winkler M. How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans Amer Math Soc, 2017, 369(5): 3067-3125 [40] Yan D, Liu C. Global boundedness of a three species predator-prey model with power-like interspecific interaction. Discrete Contin Dyn Syst Ser B, 2024, 29(7): 2999-3021 [41] Yoon C, Kim Y J. Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion, Acta Appl Math, 2017, 149: 101-123 [42] Zheng J. A new result for the global existence (and boundedness) andregularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. J Differential Equations, 2021, 272: 164-202 [43] Zheng J. An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion. J Differential Equations, 2019, 267(4): 2385-2415 [44] Zheng J. Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. J Differential Equations, 2015, 259(1): 120-140 [45] Zheng J. Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux. Calc Var Partial Differential Equations, 2022, 61(2): Art 52 |