[1] Bahouri H, Chemin J Y, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, No. 343. Heidelberg: Springer, 2011 [2] Bony J M. Calcul symbolique et propagation des singularités pour leséquations aux dérivées partielles non linéaires. Annales Scientifiques de l'école Normale Supérieure, 1981, 14: 209-246 [3] Charve F, Danchin R. A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework. Arch Rational Mech Anal, 2010, 198: 233-271 [4] Chemin J Y. Perfect Incompressible Fluids.New York: Oxford University Press, 1998 [5] Chemin J Y, Lerner N. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J Diff Eqns, 1992, 121: 314-328 [6] Chen Q, Miao C, Zhang Z. Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Commun Pure Appl Math, 2010, 63: 1173-1224 [7] Chikami N, Danchin R.On the global existence and time decay estimates in critical spaces for the Navier-Stokes-Poisson system. Math Nachr, 2017, 290: 1939-1970 [8] Coifman R, Meyer Y.Ondelettes et opérateurs, Volume 3: Opérateurs multilinéaires. Paris: Hermann, 1991 [9] Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent Math, 2000, 141: 579-614 [10] Danchin R, Xu J. Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical $L^p$ framework. Arch Rational Mech Anal, 2017, 224: 53-90 [11] Degond P.Mathematical modelling of microelectronics semiconductor devices//Yau S T. Some Current Topics on Nonlinear Conservation Laws. Providence: Amer Math Soc, 2000, 77-110 [12] Dong J, Xu F. On the global well-posedness for a multi-dimensional compressible Navier-Stokes-Poisson system. Appl Math Letters, 2023, 142: 108656 [13] Haspot B. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch Rational Mech Anal, 2011, 202: 427-460 [14] Hoff D. Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids. Arch Ration Mech Anal, 1997, 139: 303-354 [15] Li H, Yang T, Zou C. Time asymptotic behavior of the bipolar Navier-Stokes-Poisson system. Acta Math Sci, 2009, 29B: 1721-1736 [16] Li Y, Wu Z. Pointwise space-time estimates of compressible Oldroyd-B model. J Diff Eqns, 2023, 351: 100-130 [17] Markowich P, Ringhofer C, Schmeiser C. Semiconductor Equations. Vienna: Springer, 1990 [18] Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20: 67-104 [19] Shi W, Xu J. A sharp time-weighted inequality for the compressible Navier-Stokes-Poisson system in the critical $L^{p}$ framework. J Diff Eqns, 2019, 266: 6426-6458 [20] Wang W, Xu X. The decay rate of solution for the bipolar Navier-Stokes-Poisson system. J Math Phys, 2014, 55: 091502 [21] Wu G, Zhang Y, Zhang A. Global existence and time decay rates for the 3D bipolar compressible Navier-Stokes-Poisson system with unequal viscosities. Sci China Math, 2020, 65: 731-752 [22] Wu Z, Wang W. Pointwise estimates for bipolar compressible Navier-Stokes-Poisson system in dimension three. Arch Rational Mech Anal, 2017, 226: 587-638 [23] Wu Z, Wang W. Generalized Huygens' principle for bipolar non-isentropic compressible Navier-Stokes-Poisson system in dimension three. J Diff Eqns, 2020, 269: 7906-7930 [24] Wu Z, Wang W. Pointwise space-time estimates of 3D bipolar compressible Navier-Stokes-Poisson system with unequal viscosities. Sci China Math, 2024, 67(5): 1059-1084 [25] Xu F, Gao N. On the global well-posedness and optimal large-time behavior of strong solution for a multi-dimensional two-fluid plasma model. Commun Math Sci, 2023, 21: 1019-1054 [26] Zhao Z, Li Y. Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force. Nonlinear Anal RWA, 2014, 16: 146-162 [27] Zheng X. Global well-posedness for the compressible Navier-Stokes-Poisson system in the $L^{p}$ framework. Nonlinear Anal, 2012, 75: 4156-4175 |