[1] Fan J S, Gao H J, Guo B L. Regularity criteria for the Navier-Stokes-Landau-Lifshitz system. J Math Anal Appl, 2010, 363(1): 29-37 [2] Zhai X P, Li Y S, Yan W. Global solutions to the Navier-Stokes-Landau-Lifshitz system. Math Nachr, 2016, 289(2/3): 377-388 [3] Duan N, Zhao X P. On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations. AIMS Math, 2020, 5(6): 6457-6463 [4] Wei R Y, Li Y, Yao Z A. Decay rates of higher-order norms of solutions to the Navier-Stokes-Landau-Lifshitz system. Appl Math Mech (English Ed), 2018, 39(10): 1499-1528 [5] Wang G W, Guo B L. Existence and uniqueness of the weak solution to the incompressible Navier-Stokes-Landau-Lifshitz model in 2-dimension. Acta Math Sci, 2017, 37B(5): 1361-1372 [6] Wang G W, Guo B L. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete Contin Dyn Syst Ser B, 2019, 24(11): 6141-6166 [7] Wang G W, Wang Y D. Global smooth solution to the incompressible Navier-Stokes-Landau-Lifshitz equations. Acta Math Appl Sin Engl Ser, 2023, 39(1): 135-178 [8] Kalousek M, Kortum J, Schlömerkemper A. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete Contin Dyn Syst Ser S, 2021, 14(1): 17-39 [9] Kalousek M, Schlömerkemper A. Dissipative solutions to a system for the flow of magnetoviscoelastic materials. J Differential Equations, 2021, 271: 1023-1057 [10] Huang T, Wang C Y. Blow up criterion for nematic liquid crystal flows. Comm Partial Differential Equations, 2012, 37(5): 875-884 [11] Huang B Y, Huang J R. A blow-up criterion for incompressible hydrodynamic flow of liquid crystals in dimension two. Math Methods Appl Sci, 2014, 37(9): 1353-1363 [12] Huang B Y. A Serrin type criterion for incompressible hydrodynamic flow of liquid crystals in dimension three. Filomat, 2014, 28(7): 1445-1456 [13] Zhang Z J, Qiu S L, Pan J, Ma L. A refined blow up criterion for the nematic liquid crystals. International Journal of Contemporary Mathematical Sciences, 2014, 9(9): 441-446 [14] Wang Y Z, Wang Y X. Blow up criterion for three-dimensional nematic liquid crystal flows with partial viscosity. Math Methods Appl Sci, 2013, 36(1): 60-68 [15] Mahmood T, Shang Z Y. Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Math, 2020, 5(2): 746-765 [16] Liu Q, Zhao J Z. Logarithmically improved blow-up criteria for the nematic liquid crystal flows. Nonlinear Anal Real World Appl, 2014, 16: 178-190 [17] Liu Q. On blow-up criteria for the 3D nematic liquid crystal flows. IMA J Appl Math, 2015, 80(6): 1855-1870 [18] Bai M, Liu Q, Zhao J Z. A logarithmically improved blow-up criterion for a simplified Ericksen-Leslie system modeling the liquid crystal flows. J Partial Differ Equ, 2015, 28(4): 358-369 [19] Liu Q, Wei Y M. Blow up criteria for the incompressible nematic liquid crystal flows. Acta Appl Math, 2017, 147: 63-80 [20] Qiu Z, Wang G W. A blowup criterion for nonhomogeneous incompressible Navier-Stokes-Landau-Lifshitz system in 2-D. Math Methods Appl Sci, 2023, 46(2): 2500-2516 [21] Ding S J, Wang C Y. Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int Math Res Not IMRN, 2007, 2007(9): Article number rnm012 [22] Bartels S, Ko J, Prohl A. Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation. Math Comp, 2008, 77(262): 773-788 [23] Huang B Y, Huang J R, Yue X. Global strong solutions for 2D incompressible Navier-Stokes-Landau-Lifshitz equations. Journal of South China Normal University(Natural Science Edition), 2017, 49(6): 113-118 [24] Wang G W, Guo B L. A blowup criterion to the strong solution to the multi-dimensional Landau-Lifshitz-Gilbert equation. Appl Math Lett, 2023, 135: Paper No 108410 [25] Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41(7): 891-907 [26] Machihara S, Ozawa T. Interpolation inequalities in Besov spaces. Proc Amer Math Soc, 2003, 131(5): 1553-1556 [27] Huang X D. A representation formula of incompressible liquid crystal flow and its applications. Nonlinearity, 2017, 30(5): 1911-1919 |