[1] Amosov A A. Unique solvability of a nonstationary problem of radiative-conductive heat exchange in a system of semitransparent bodies. Russ J Math Phys, 2016, 23(3): 309-334 [2] Amosov A A. Unique solvability of stationary radiative-conductive heat transfer problem in a system of semitransparent bodies. J Math Sci, 2017, 224(5): 618-646 [3] Bardos C, Golse F, Perthame B, Sentis R. The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J Funct Anal, 1988, 77: 434-460 [4] Bensoussan A, Lions J L, Papanicolaou G C. Boundary layers and homogenization of transport processes. Publ Res Inst Math Sci, 1979, 15(1): 53-157 [5] Buet C, Despres B. Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics. J Quant Spectroscopy Rad Transf, 2004, 85(3): 385-418 [6] Cercignani C, Illner R, Pulvirenti M.The Mathematical Theory of Dilute Gases. Berlin: Springer-Verlag, 1994 [7] Esposito R, Guo Y, Kim C, Marra R. Non-isothermal boundary in the Boltzmann theory and Fourier law. Comm Math Phys, 2013, 323(1): 177-239 [8] Ghattassi M, Huo X, Masmoudi N. On the diffusive limits of radiative heat transfer system I: well-prepared initial and boundary conditions. SIAM J Math Anal, 2022, 54(5): 5335-5387 [9] Ghattassi M, Roche J R, Schmitt D. Existence and uniqueness of a transient state for the coupled radiative-conductive heat transfer problem. Comput Math Appl, 2018, 75(11): 3918-3928 [10] Godillon-Lafitte P, Goudon T. A coupled model for radiative transfer: Doppler effects, equilibrium,nonequilibrium diffusion asymptotics. Multiscale Model Simul, 2005, 4(4): 1245-1279 [11] Golse F, Lions P L, Perthame B, Sént R. Regularity of the moments of the solution of a transport equation. J Funct Anal, 1988, 76: 110-125 [12] Guo Y, Wu L. Geometric correction in diffusive limit of neutron transport equation in 2D convex domains. Arch Ration Mech Anal, 2017, 226(1): 1-83 [13] Guo Y, Wu L. Regularity of Milne problem with geometric correction in 3D. Math Models Methods Appl Sci, 2017, 27(3): 453-524 [14] Klar A, Schmeiser C. Numerical passage from radiative heat transfer to nonlinear diffusion models. Math Models Methods Appl Sci, 2001, 11(5): 749-767 [15] Li L, Zhang Z C. Diffusion asymptotics of a coupled model for radiative transfer: general initial data. Commun Pure Appl Anal, 2024, 23(5): 595-619 [16] Li L, Zhang Z C, Ju Q C. Diffusion asymptotics of a coupled model for radiative transfer in a unit disk. J Differencial Equations, 2023, 365: 235-273 [17] Lowrie R B, Morel J E, Hittinger J A. The coupling of radiation and hydrodynamics. Astrophys J, 1999, 521(1): 432-450 [18] Pomraning G C.The Equations of Radiation Hydrodynamics. New York: Pergamon Press, 1973 [19] Porzio M M, López-Pouso O. Application of accretive operators theory to evolutive combined conduction, convection and radiation. Rev Mat Iberoamericana, 2004, 20(1): 257-275 [20] Wu L. Asymptotic analysis of unsteady neutron transport equation. Math Methods Appl Sci, 2019, 42(8): 2544-2585 [21] Wu L.Boundary layer of transport equation with in-flow boundary. Arch Ration Mech Anal, 2020, 235(3): 2085-2169 [22] Wu L. Diffusive limit of transport equation in 3D convex domains. Peking Math J, 2021, 4(2): 203-284 [23] Wu L. Diffusive limit with geometric correction of unsteady neutron transport equation. Kinet Relat Models, 2017, 10(4): 1163-1203 [24] Wu L, Guo Y. Geometric correction for diffusive expansion of steady neutron transport equation. Comm Math Phys, 2015, 336(3): 1473-1553 [25] Wu L, Yang X F, Guo Y. Asymptotic analysis of transport equation in annulus.J Stat Phys, 2016, 165(3): 585-644 |