[1] Cao T B, Chen Y, Korhonen R. Meromorphic solutions of higher order delay differential equations. Bull Sci Math, 2023, 182: 1-28 [2] Chen Y, Cao T B. Meromorphic solutions of a first order differential equations with delays. C R Math Acad Sci Paris, 2022, 360: 665-678 [3] Chiang Y M, Feng S J. On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J, 2008, 16(1): 105-129 [4] Fuchs R. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math Ann, 1907, 63(3): 301-321 [5] Gambier B. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes. Acta Math, 1910, 33: 1-55 [6] Gromak V I, Laine I, Shimomura S.Painlevé Differential Equations in the Complex Plane. Berlin: Walter de Gruyter, 2002 [7] Halburd R G, Korhonen R J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J Math Anal Appl, 2006, 314(2): 477-487 [8] Halburd R G, Korhonen R J. Growth of meromorphic solutions of delay differential equations. Proc Amer Math Soc, 2017, 145(6): 2513-2526 [9] Halburd R G, Korhonen R J, Tohge K. Holomorphic curves with shift-invariant hyperplane preimages. Trans Amer Math Soc, 2014, 366(8): 4267-4298 [10] Hille E. Finiteness of the order of meromorphic solutions of some non-linear ordinary differential equations. Proc Roy Soc Edinburgh Sect A, 1975, 72(4): 331-336 [11] Hille E. On some generalizations of the Malmquist theorem. Math Scand, 1976, 39(1): 59-79 [12] Hille E. Remarks on Briot-Bouquet differential equations I. Comment Math Spec Issue, 1978, 1: 119-132 [13] Hille E. Some remarks on Briot-Bouquet differential equations II. J Math Anal Appl, 1978, 65(3): 572-585 [14] Hu P C, Liu M L. A Malmquist type theorem for a class of delay differential equations. Bull Malays Math Sci Soc, 2021, 44: 131-145 [15] Ishizaki K. Admissible solutions of the Schwarzian differential equation. J Austral Math Soc Ser A, 1991, 50: 258-278 [16] Ishizaki K. Meromorphic solutions of difference Riccati equations. Complex Var Elliptic Equ, 2017, 62: 110-122 [17] Joshi N, Kruskal M. A direct proof that solutions of the six Painlevé equations have no movable singularities except poles. Stud Appl Math, 1994, 93: 187-207 [18] Laine I. Complex differential equations. Handb Differ Equ, 2008, 4: 269-363 [19] Laine I.Nevanlinna Theory and Complex Differential Equations. Berlin: Walter de Gruyter, 1993 [20] Laine I. On the behaviour of the solutions of some first order differential equations. Ann Acad Sci Fenn Ser A I, 1971, 497: 1-26 [21] Liao L W, Wu C F. Exact meromorphic solutions of Schwarzian differential equations. Math Z, 2022, 300: 1657-1672 [22] Malmquist J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre. Acta Math, 1913, 36(1): 297-343 [23] Miwa T. Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau$ functions. Publ Res Inst Math Sci, 1981, 17: 703-721 [24] Painlevé P. Mémoire sur les équations différentielles dont l'intégrale généraleest uniforme. Bull Soc Math France, 1900, 28: 201-261 [25] Painlevé P. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme. Acta Math, 1902, 25: 1-85 [26] Quispel G R W, Capel H W, Sahadevan R. Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction. Phys Lett A, 1992, 170: 379-383 [27] Wang Q, Han Q, Hu P C. Quantitative properties of meromorphic solutions to some differential difference equations. Bull Aust Math Soc, 2019, 99: 250-261 [28] Wittich H. Eindeutige Lösungen der Differentialgleichung $w'=R(z,w)$. Math Z, 1960, 74: 278-288 [29] Wittich H. Zur Theorie der Riccatischen Differentialgleichung. Math Ann, 1954, 127(1): 433-440 [30] Wang Q, Long F, Wang J. Some results on difference Riccati equations and delay differential equations. Acta Math Sci, 2019, 39A(4): 832-838 [31] Yosida K. A generalisation of a Malmquist's theorem. Japan J Math, 1933, 9: 253-256 [32] Zhang J, Liao L W, Wu C F, Zhao D H.All transcendental meromorphic solutions of the autonomous Schwarzian differential equations. Bull Lond Math Soc, 2024, 56: 2093-2114 [33] Zheng J H, Korhonen R J. Studies of differences from the point of view of Nevanlinna theory. Trans Amer Math Soc, 2020, 373: 4285-4318 |