[1] Adler R, Konheim A, McAndrew M. Topological entropy. Trans Am Math Soc, 1965, 114(2): 309-319 [2] Bowen R. Entropy for group endomorphisms and homogeneous spaces. Trans Am Math Soc, 1971, 153: 401-414 [3] Bowen R. Topological entropy for noncompact sets. Trans Am Math Soc, 1973, 184: 125-136 [4] Chen H, Li Z. Scaled packing entropy for amenable group actions. Banach J Math Anal, 2023, 17: Art 50 [5] Danilenko A. Entropy theory from the orbital point of view. Monatsh Math, 2001, 134(2): 121-141 [6] Ding Z, Chen E, Zhou X.Packing topological pressure for amenable group actions. arXiv: 2405.15212 [7] Dooley A, Golodets V, Zhang G. Sub-additive ergodic theorems for countable amenable groups. J Funct Anal, 2014, 267(5): 1291-1320 [8] Dou D, Zheng D, Zhou X. Packing topological entropy for amenable group actions. Ergod Theory Dyn Syst, 2023, 43(2): 480-514 [9] Feng D, Huang W. Variational principles for topological entropies of subsets. J Funct Anal, 2012, 263(8): 2228-2254 [10] Huang X, Li Z, Zhou Y. A variational principle of topological pressure on subsets for amenable group actions. Discrete Contin Dyn Syst, 2020, 40(5): 2687-2703 [11] Katok A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ math IHES, 1980, 51(1): 137-173 [12] Li J, Tu S. Dynamical intricacy and average sample complexity of amenable group actions. Sci China Math, 2022, 65: 1247-1266 [13] Ma J, Wen Z. A Billingsley type theorem for Bowen entropy. C R Math, 2008, 346(9): 503-507 [14] Mattila P.Geometry of Sets and Measures in Euclidean Spaces. Cambridge: Cambridge University Press, 1995 [15] Pesin Y, Pitskel B. Topological pressure and the variational principle for noncompact sets. Funct Anal Appl, 1984, 18(4): 307-318 [16] Pesin Y.Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago: University of Chicago Press, 1997 [17] Ruelle D. Statistical mechanics on a compact set with $z^{v}$ action satisfying expansiveness and specification. Trans Am Math Soc, 1973, 185: 237-251 [18] Tang X, Cheng W, Zhao Y. Variational principle for topological pressures on subsets. J Math Anal Appl, 2015, 424(2): 1272-1285 [19] Walters P.An introduction to ergodic theory. New York: Springer-Verlag, 1982 [20] Wang T. Some notes on topological and measure-theoretic entropy. Qual Theory Dyn Syst, 2021, 20(1): 1-13 [21] Zhang R. Topological pressure of generic points for amenable group actions. J Dyn Diff Equat, 2018 30(4): 1583-1606 [22] Zhao Y, Pesin Y. Scaled entropy for dynamical systems. J Stat Phys, 2015, 158: 447-475 [23] Zheng D, Chen E. Topological entropy of sets of generic points for actions of amenable groups. Sci China Math, 2018, 61: 869-880 [24] Zhong X, Chen Z. Variational principle for topological pressures on subsets. Nonlinearity, 2023, 36: 1168-1191 |