[1] Adams R A, Fournier J J F. Sobolev Spaces. San Diego: Elsevier, 2003 [2] Antontsev S N, de Oliveira H B. Evolution problems of Navier-Stokes type with anisotropic diffusion. Racsam Rev R Acad A, 2016, 110(2): 729-754 [3] Bendahmane M, Langlais M, Saad M. On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease. Nonlinear Anal: TMA, 2003, 54(4): 617-636 [4] Brzeźniak Z, Capiński M, Flandoli F. Stochastic Navier-Stokes equations with multiplicative noise. Stoch Anal Appl, 1992, 10(5): 523-532 [5] Caraballo T, Langa J A, Taniguchi T. The exponential behaviour and stabilizability of stochastic 2D-Navier-Stokes equations. J Differ Equations, 2002, 179(2): 714-737 [6] Chen H. Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays. Proc Math Sci, 2012, 122: 283-295 [7] Chrif M, El Manouni S, Hjiaj H. Parabolic anisotropic problems with lower order terms and integrable data. Differ Equ Appl, 2020, 12(4): 411-442 [8] Dierckx H, Bernus O, Verschelde H. Accurate eikonal-curvature relation for wave fronts in locally anisotropic reaction-diffusion systems. Phys Rev Lett, 2011, 107(10): Art 108101 [9] Fragalá I, Gazzola F, Kawohl B. Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann I H Poincaré-AN, 2004, 21(5): 715-734 [10] Huang X. Strong solutions Strong solutions for functional SDEs with singular drift. Stoch Dynam, 2018, 18(2): Art 1850015 [11] Lions J L.Quelques Méthodes de Résolution des Problemes aux Limites non Linéaires. Paris: Dunod Gauthier-Villars, 1969 [12] Liu W, Röckner M. SPDE in Hilbert space with locally monotone coefficients. J Funct Anal, 2010, 259(11): 2902-2922 [13] Liu W, Röckner M. Stochastic Partial Differential Equations: An Introduction. Cham: Springer, 2015 [14] Neelima. On well-posedness of stochastic anisotropic $p$-Laplace equation driven by Lévy noise. Potential Anal, 2022, 57(4): 671-707 [15] Nirenberg L. On elliptic partial differential equations. Ann Scuola Norm Sup Pisa, 1959, 13(3): 115-162 [16] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intelligence, 1990, 12: 161-192 [17] Pu X, Guo B. Global well-posedness of the stochastic 2D Boussinesq equations with partial viscosity. Acta Math Sci, 2011, 31B(5): 1968-1984 [18] Song Y, Wang Z. Regularity for distribution-dependent SDEs driven by jump processes. Stoch Dynam, 2022, 22(5): Art 2250011 [19] Temam R. Navier-Stokes Equations.North-Holland: Amsterdam, 1979 [20] Zhang X. On stochastic evolution equations with non-Lipschitz coefficients. Stoch Dynam, 2009, 9(4): 549-595 [21] Zhou G, Hou Z. The ergodicity of stochastic generalized porous media equations with Lévy jump. Acta Math Sci, 2011, 31B(3): 925-933 |