|   [1] Achdou Y, Pironneau O, Valentin F. Effective boundary conditions for laminar flows over periodic rough 
boundaries. J Comput Phys, 1998, 147: 187–218 
 
[2] Adams R A, Fournier J F. Sobolev Spaces. Amsterdam: Elsevier/Academic Press, 2003 
 
[3] Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential 
equations satisfying general boundary conditions, 1. Comm Pure Appl Math. 1959, 12: 623–727 
 
[4] B¨ansch E. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer 
Math, 2001, 88: 203–235 
 
[5] Beavers G S, Joseph D D. Boundary conditions at a naturally permeable wall. J Fluid Mech, 1967, 30: 
197–207 
 
[6] Bellout H, Neustupa J, Penel P. On the Navier-Stokes equations with boundary conditions based on 
vorticity. Math Nachr, 2004, 269-270: 57–72 
 
[7] Cioranescu D, Donato P, Ene H. Homogenization of the Stokes problem with nonhomogeneous slip boundary conditions. Math Meth Appl Sci, 1996, 19: 857–881 
 
[8] Clopeau T, Mikeli´c A, Robert R. On the vanishing viscosity limit for the 2D incompressible Navier-Stokes 
equations with the friction type boundary condition. Nonlinearity, 1998, 11: 1625–1636 
 
[9] Conner P E. The Neumann’s problem for differential forms on Riemannian manifolds. Mem Amer Math 
Soc, 1956, 20 
 
[10] Duff G F D, Spencer D C. Harmonic tensors on Riemannian manifolds with boundary. Ann Math, 1952, 
56: 128–156 
 
[11] Einzel D, Panzer P, Liu M. Boundary condition for fluid flow: curved or rough surfaces. Phys Rev Letters, 
1990, 64: 2269–2272 
 
[12] Grisvard P. Elliptic Problems in Nonsmooth Domains. Boston, MA: Pitman, 1985 
 
[13] Hopf E. ¨Uber die Anfangswertaufgabe f¨ur die hydrodynamischen Grundgleichungen. Mach Nachrichten, 
1950-51, 4: 213–231 
 
[14] J¨ager W, Mikelic A. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J Appl 
Math, 2000, 60: 1111–1127 
 
[15] J¨ager W, Mikelic A. On the roughness-induced effective boundary conditions for an incompressible viscous 
flow. J Diff Eqns, 2001, 170: 96–122 
 
[16] Kato T. Integration of the equation of evolution in a Banach space. J Math Soc Japan, 1953, 5: 208–234 
 
[17] Kato T. On linear differential equations in Banach spaces. Comm Pure Appl Math, 1956, 9: 479–486 
 
[18] Kato T. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Seminar on 
Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), 85–98, Mathematical Sciences Research 
Institute Publications, 2. New York: Springer, 1984 
 
[19] Kreiss H O, Lorenz J. Initial-Boundary Value Problems and the Navier-Stokes Equations. Classics In 
Applied Mathematics 47. Philadelphia, PA: SIAM, 2004 
 
[20] Ladyzenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. Translation from the 
Russian, Mathematics and Its Applications, 2. New York: Gordan and Breach, 1969 
 
[21] Ladyzenskaya O A, Uralceva N N. Equations `a D´eriv´ees Partielles de Type Elliptique. Paris: Dunod, 1968 
 
[22] Ladyzenskaya O A, Solonnikov V A, Uralceva N N. Linear and Quasilinear Equations of Parabolic Type. 
Translation from the Russian, Translations of Mathematical Monogragh, 23. Providence, RI: AMS, 1967 
 
[23] Lauga E, Brenner M P, Stone H A. Microfluidcs: The no-slip boundary condition//Foss J, Tropea C, Yarin 
A, eds. Handbook of Experimental Fluid Dynamics. New York: Springer, 2005 
 
[24] Leray J. Étude de diverses èquations intègrales non linèaires et de quelques problèmes que pose l’hydrodynamique. J Math Pures Appl, Sèrie 9, 1933, 12: 1–82 
 
[25] Leray J. Essai sur les mouvements plans dún liquide visqueux que limitent des parois. J Math Pures Appl, 
Série 9, 1934, 13: 331–418 
 
[26] Leray J. Sur le mouvement d’un liquide visquex emplissent l’espace. Acta Math, 1934, 63, 193–248 
 
[27] Liberman G M. Second-Order Parabolic Differential Equations. River Edge, NJ: World Scientific, 1996 
 
[28] Lions J -L. Quelques Mèthodes de Rèsolution des Problèmes aux Limites Non Linèaires. Dunod, Paris: 
Gauthier-Villars, 1969 
 
[29] Lions P -L. Mathematical Topics in Fluid Mechanics, Vol 1. New York: Oxford University Press: 1996 
 
[30] Lopes Filho M C, Nussenzveig Lopes H J, Planas G. On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J Math Anal, 2005, 36: 1130–1141 
 
[31] Ma T, Wang S -H. Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics. 
Providence RI: AMS, 2005 
 
[32] Ma Z M, R¨ockner M. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Berlin: Springer- 
Verlag, 1992 
 
[33] Majda A J, Bertozzi A L. Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics. 
Cambridge, UK: Cambridge Univ Press, 2002 
 
[34] Morrey C B. Multiple Integrals in the Calculus of Variations. New York: Springer-Verlag, 1966 
 
[35] Mucha P B. On Navier-Stokes equations with slip boundary conditions in an infinite pipe. Acta Appl 
Math, 2003, 76: 1–15 
 
[36] Navier C L M H. Sur les lois de l’èquilibre et du mouvement des corps èlastiques. Mem Acad R Sci Inst 
France, 1827, 6: 369 
 
[37] Palais R S, Terng C -L. Critical Point Theory and Submanifold Geometry. Lecture Notes in Math 1353. 
Berlin: Springer-Verlag, 1988 
 
[38] Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: 
Springer-Verlag, 1983 
 
[39] Pope S B. Turbulent Flows. Cambridge, UK: Cambridge Univ Press, 2000 
 
[40] Prandtl L. Über Flüssigkeitsbewegungen bei sehr Kleiner Reibung. Verh III Int Math -Kongr (Heidelberg 
1904), 484–494, Teubner, Leipzig, 1905 
 
[41] Qian T, Wang X P, Sheng P. Molecular scale contact line hydrodynamics of immiscible flows. Phys Rev 
E, 2003, 68: 016306 
 
[42] de Rham G. Differentiable Manifolds: Forms, Currents, Harmonic Forms. Berlin: Springer-Verlag, 1984 
 
[43] Schwarz G. Hodge Decomposition-A Method for Solving Boundary Value Problems. Lecture Notes in 
Math 1607. Berlin: Spring-Verlag, 1995 
 
[44] Serrin J. The initial value problem for the Navier-Stokes equations//Langer R T, ed. Nonlinear Problems 
(Proceedings of a Symposium, Madison, Wis). Madison: University of Wisconsin, 1963: 69–98 
 
[45] Solonnikov V A. Estimates for solutions of nonstationary Navier-Stokes equations. J Soviet Math, 1977, 
8: 467–529 
 
[46] Solonnikov V A, ˇSˇcadilov V E. A certain boundary value problem for the stationary system of Navier-Stokes equations. In: Boundary Value Problems of Mathematical Physics, 8. Trudy Mat Inst Steklov, 
1973, 125: 196–210. Transl. in Proc Steklov Inst Math, 1973, 125: 186–199 
 
[47] Tanabe H. Equations of Evolution. Monographs and Studies in Mathematics 6. Boston-Londan: Pitman, 
1979 
 
[48] Temam R. Navier-Stokes Equations. Amsterdam: North-Holland, 1984 
 
[49] Temam R, Wang X. On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. 
Ann Scuola Norm Sup Pisa Cl Sci 4, 1997, 25(3/4): 807–828 
 
[50] Temam R. Wang X. Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case. J Diff Eqns, 2002, 179: 647–686 
 
[51] vonWahlW. The Equations of Navier-Stokes and Abstract Parabolic Equations. Braunschweig/Wiesbaden: 
Vieweg & Sohn, 1985 
 
[52] Wang X. A Kato type theorem on zero viscosity limit of Navier-Stokes flows. Indiana Univ Math J, 2001, 
50(Special Issue): 223–241 
 
[53] Xiao Y, Xin Z -P. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary 
condition. Comm Pure Appl Math, 2007, 60: 1027–1055 
 
[54] Yudovich V I. A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid 
through a given region. Math Sb, 1964, 4: 562–588 
 
[55] Zhu Y, Granick S. Limits of the hydrodynamic no-slip boundary condition. Phys Rev Letters, 2002, 88(10): 106102
  |