|    
[1] Degond P, Lemou M. Dispersion relations for the linearized Fokker-Planck equation. Arch Ration Mech Anal, 1997, 138(2): 137–167 
 
[2] Desvillettes L, Villani C. On the spatially homogeneous Landau equation for hard potentials (I-II). Comm P D E, 2000, 25 (1/2): 179–298 
 
[3] Desvillettes L, Villani C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: 
the Boltzmann equation. Invent Math, 2005, 159 (2): 245–316 
 
[4] DiPerna R J, Lions P L. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann Math, 1989, 130: 321–366 
 
[5] Duan R -J, Ukai S, Yang T. A combination of energy method and spectral analysis for the study on systems 
for gas motions. preprint, 2008 
 
[6] Duan R -J, Ukai S, Yang T, Zhao H -J. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277: 189–236 
 
[7] Glassey R T. The Cauchy Problem in Kinetic Theory. Philadelphia, PA: Society for Industrial and Applied 
Mathematics (SIAM), 1996 
 
[8] Grad H. Asymptotic theory of the Boltzmann equation II//Laurmann J A, ed. Rarefied Gas Dynamics. New York: Academic Press, 1963: 26–59 
 
[9] Guo Y. The Landau Equation in periodic box. Comm Math Phys, 2002, 231: 391–434 
 
[10] Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53(4): 1081–1094 
 
[11] Guo Y. Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm Pure Appl Math, 2006, 
59(5): 626–687 
 
[12] Hsiao L, Yu H -J. On the Cauchy problem of the Boltzmann and Landau equations with soft potentials. 
Quart Appl Math, 2007, 65(2): 281–315 
 
[13] Kawashima S. The Boltzmann equation and thirteen moments. Japan J Appl Math, 1990, 7: 301–320 
 
[14] Li F -C, Yu H -J. Decay rate of global classical solutions to the Landau equation with external force. 
Nonlinearity, 2008, 21: 1813–1830 
 
[15] Liu T -P, Yang T, Yu S -H. Energy method for the Boltzmann equation. Physica D, 2004, 188:(3/4): 178–192 
 
[16] Liu T -P, Yu S -H. Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Comm Math Phys, 2004, 246(1): 133–179 
 
[17] Strain R M, Guo Y. Exponential decay for soft potentials near Maxwellian. Arch Rat Mech Anal, 2008, 
187(2): 287–339 
 
[18] Ukai S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc 
Japan Acad, 1974, 50: 179–184 
 
[19] Ukai S. Les solutions globale de l’équation de Boltzmann dans léspace tout entier et dans le demi-espace. 
C R Acad Sci Paris Ser A, 1976, 282(6): 317–320 
 
[20] Ukai S, Yang T. Mathematical theory of Boltzmann equation. Lecture Notes Series No 8. Hong Kong: Liu Bie Ju Center of Mathematical Sciences, City University of Hong Kong, 2006 
 
[21] Villani C. A survey of mathematical topics in kinetic theory//Friedlander S, Serre D, Eds. Handbook of Fluid Mechanics, Vol I. Amsterdam: North-Holland, 2002: 71–305 
 
[22] Villani C. Hypocoercivity. Memoirs Amer Math Soc, in press, 2008 
 
[23] Villani C. Hypocoercive diffusion operators. Proceedings of the International Congress of Mathematicians, 
Madrid, 2006 
 
[24] Yang T, Yu H -J. Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space. 
Preprint, 2008 
 
[25] Yang T, Yu H -J, Zhao H -J. Cauchy Problem for the Vlasov-Poisson-Boltzmann system. Arch Rational 
Mech Anal, 2006, 182(3): 415–470 
 
[26] Yang T, Zhao H -J. Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Comm 
Math Physm, 2006, 268(3): 569–605 
 
[27] Yu H -J. Global classical solution of the Vlasov-Maxwell-Landau system near Maxwellians. J Math Phys, 
2004, 45(11): 4360–4376 
 
[28] Zhan M. Local existence of classical solutions to the Landau equations. Transport Theory Statist Phys, 
1994, 23(4): 479–499 
 
[29] Zhan M. Local existence of solutions to the Landau-Maxwell system. Math Methods Appl Sci, 1994, 17(8): 613–641
  |