| 
                            			 
                              			
                              		 | 
                            		
																						THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTIONAL LAPLACIAN IN $\mathbb{R}^N$ WITH A HARDY TERM
											                            			
                            			 
                            				李工宝, 杨涛
                            			 
                              			数学物理学报(英文版). 2020 (6): 
																					1808-1830. 
																														DOI: 10.1007/s10473-020-0613-8
																				
                              			 
                              			
                                		
			                            	In this paper, we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term: \begin{equation} \label{eq0.1} (-\Delta)^{s}u-{\gamma} {\frac{u}{|x|^{2s}}}= {\frac{{|u|}^{ {2^{*}_{s}}(\beta)-2}u}{|x|^{\beta}}}+ \big [   I_{\mu}* F_{\alpha}(\cdot,u)  \big](x)f_{\alpha}(x,u),   \ \ u \in {\dot{H}}^s(\mathbb{R}^n),        (0.1)\end{equation} where $s \in(0,1)$, $0\leq \alpha,\beta < 2s < n$, $\mu \in (0,n)$, $\gamma < \gamma_{H}$, $I_{\mu}(x)=|x|^{-\mu}$, $F_{\alpha}(x,u)=\frac{      {|u(x)|}^{ {2^{\#}_{\mu} }(\alpha)}      }{  {|x|}^{  {\delta_{\mu} (\alpha)} }  }$, $f_{\alpha}(x,u)=\frac{      {|u(x)|}^{{ 2^{\#}_{\mu} }(\alpha)-2}u(x)      }{  {|x|}^{  {\delta_{\mu} (\alpha)}            }  }$, $2^{\#}_{\mu} (\alpha)=(1-\frac{\mu}{2n})\cdot 2^{*}_{s} (\alpha)$,  $\delta_{\mu} (\alpha)=(1-\frac{\mu}{2n})\alpha$,   ${2^{*}_{s}}(\alpha)=\frac{2(n-\alpha)}{n-2s}$ and  $\gamma_{H}=4^s\frac{\Gamma^2(\frac{n+2s}{4})} {\Gamma^2(\frac{n-2s}{4})}$. We show that problem (0.1) admits at least a weak solution under some conditions. To prove the main result, we develop some useful tools based on a weighted Morrey space. To be precise, we discover the embeddings \begin{equation} \label{eq0.2} {\dot{H}}^s(\mathbb{R}^n) \hookrightarrow  {L}^{2^*_{s}(\alpha)}(\mathbb{R}^n,|y|^{-\alpha}) \hookrightarrow L^{p,\frac{n-2s}{2}p+pr}(\mathbb{R}^n,|y|^{-pr}), (0.2)\end{equation} where $s \in (0,1)$, $0 < \alpha < 2s < n$, $p\in[1,2^*_{s}(\alpha))$ and $r=\frac{\alpha}{ 2^*_{s}(\alpha) }$. We also establish an improved Sobolev inequality, \begin{equation} \label{eq0.3}  \Big( \int_{ \mathbb{R}^n }  \frac{ |u(y)|^{ 2^*_{s}(\alpha)} }  {  |y|^{\alpha} }{\rm d}y  \Big)^{ \frac{1}{  2^*_{s} (\alpha)  }}  \leq C ||u||_{{\dot{H}}^s(\mathbb{R}^n)}^{\theta} ||u||^{1-\theta}_{  L^{p,\frac{n-2s}{2}p+pr}(\mathbb{R}^n,|y|^{-pr}) },~~~~\forall u \in {\dot{H}}^s(\mathbb{R}^n), (0.3)\end{equation} where $s \in (0,1)$, $0 < \alpha < 2s < n$, $p\in[1,2^*_{s}(\alpha))$, $r=\frac{\alpha}{ 2^*_{s}(\alpha) }$, $0 < \max \{ \frac{2}{2^*_{s}(\alpha)}, \frac{2^*_{s}-1}{2^*_{s}(\alpha)}  \} < \theta < 1$,  ${2^{*}_{s}}=\frac{2n}{n-2s}$ and $C=C(n,s,\alpha) > 0$ is a constant. Inequality (0.3)  is a more general form of Theorem 1 in  Palatucci,  Pisante [1]. By using the mountain pass lemma along with (0.2) and (0.3), we obtain a nontrivial weak solution to problem (0.1) in a direct way.  It is worth pointing out that (0.2) and 0.3) could be applied to simplify the proof of the existence results in [2] and [3].
			                             
                              			
                              					                              					                              					                              					参考文献 | 
	                              					                              					                              				相关文章 | 
	                              				计量指标
                              				                              			
                              			
										                              		 |