| 
                            			 
                              			
                              		 | 
                            		
																						ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES
											                            			
                            			 
                            				王艳青, 魏巍, 吴刚, 叶嵎林
                            			 
                              			数学物理学报(英文版). 2022 (2): 
																					671-689. 
																														DOI: 10.1007/s10473-022-0216-7
																				
                              			 
                              			
                                		
			                            	In this paper, we derive several new sufficient conditions of the non-breakdown of strong solutions for both the 3D heat-conducting compressible Navier-Stokes system and nonhomogeneous incompressible Navier-Stokes equations. First, it is shown that there exists a positive constant $\varepsilon$ such that the solution $(\rho,u,\theta)$ to the full compressible Navier-Stokes equations can be extended   beyond $t=T$ provided that   one of the following two conditions holds:   (1)   $\rho \in L^{\infty}(0,T;L^{\infty}(\mathbb{R}^{3}))$,   $u\in L^{p,\infty}(0,T;L^{q,\infty}(\mathbb{R}^{3}))$ and      \begin{equation}\label{L1}\| u\|_{L^{p,\infty}(0,T;L^{q,\infty}(\mathbb{R}^{3}))}\leq \varepsilon, ~~\text{with}~~ {2/p}+ {3/q}=1,\ \  q > 3;\end{equation} (2) $\lambda < 3\mu,$ $\rho \in L^{\infty}(0,T;L^{\infty}(\mathbb{R}^{3}))$, $\theta\in L^{p,\infty}(0,T;L^{q,\infty}(\mathbb{R}^{3}))$ and   \begin{equation}\label{L12}\|\theta\|_{L^{p,\infty}(0,T;     L^{q,\infty}(\mathbb{R}^{3}))}\leq \varepsilon, ~~\text{with}~~ {2/p}+ {3/q}=2,\ \  q > 3/2.\end{equation}   To the best of our knowledge, this is the first continuation theorem allowing the time direction to  be in Lorentz spaces for the   compressible fluid. Second,   we establish some blow-up criteria in anisotropic Lebesgue spaces for the finite blow-up time $T^{\ast}$:   (1)  assuming that the pair $(p,\overrightarrow{q})$ satisfies $ {2}/{p }+{1}/{q_{1} }+{1}/{q_{2} }+{1}/{q_{3} }=1$ $(1 < q_{i} < \infty)$ and (1.17), then  \begin{equation}\label{AL1}\limsup_{t\rightarrow T^*}(   \|\rho \|_{L^{\infty}(0,t;L^{\infty}(\mathbb{R}^{3}))}+ \|  u \|_{L^{p }(0,t; L_{1}^{ q_{1} }L_{2}^{ q_{2} } L_{3}^{q_{3} }(\mathbb{R}^{3}) )} )= \infty;   \end{equation} (2) letting the pair $(p,\overrightarrow{q})$ satisfy ${2}/{p }+{1}/{q_{1} }+{1}/{q_{2} }+{1}/{q_{3} }=2$ $(1 < q_{i} < \infty)$ and  (1.17), then     \begin{equation}\label{AL2}\limsup_{t\rightarrow T^*}(   \|\rho \|_{L^{\infty}(0,t;L^{\infty}(\mathbb{R}^{3}))}+ \| \theta \|_{L^{p }(0,t; L_{1}^{ q_{1} }L_{2}^{ q_{2} } L_{3}^{q_{3} }(\mathbb{R}^{3}) )} )= \infty, (\lambda < 3\mu).   \end{equation}    Third, without the condition on $\rho$ in (0.1) and (0.3),  the results also hold  for the 3D nonhomogeneous incompressible Navier-Stokes equations. The appearance of a vacuum in these systems could be allowed.
			                             
                              			
                              					                              					                              					                              					参考文献 | 
	                              					                              					                              				相关文章 | 
	                              				计量指标
                              				                              			
                              			
										                              		 |