|    
[1]  Yang C N. Some exact results for the many-body problem in one dimension with repulsive δ-function interaction. Phys Rev Lett, 1967, 19:  1312--1315 
 
[2]  Yang C N. S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys Rev Lett, 1968, 168: 1920--1923 
 
[3]  Baxter R J. Partition function of the eight-vertex lattice model. Ann Phys, 1972, 70:  193--288 
 
[4]  Zamolodchikov A B. Factorized S-matrices in two dimensions as the exact solution of certain relativistic quantum field theory models. Ann Phys, 1979, 120: 253--291 
 
[5]  Baxter R J.  Exactly Solved Models in Statistical Mechanics.  London: Academic, 1982 
 
[6]  Jimbo M.   Yang-Baxter Equation in Integrable Systems.  Singapore: World Scientific, 1989. 
 
[7]  Drinfel'd V G. Quantum groups. J Math Sci, 1988, 41(2): 898--915 
 
[8]  Alvarez-Gaumé L,  C\'omez C, Sierra G G. Hidden quantum symmetries in rational conformal field theories.  
 Nucl Phys,  1989, 319: 155--186 
 
[9]  Frenkel B,   Reshetikhin N Y.  Quantum affine algebras and holonomic difference equations. Commu Math Phys, 1992, 146: 1--60 
 
[10]  Turaev V G. The Yang-Baxter equation and invariants of links. Inven Math,  1988, 92:  527--553 
 
[11]  Akutsu F Y, Wadati M.  Knot invariants and the critical statistical systems. J Phys Soc Japan,  1987, 56: 839--842 
 
[12]  Fan C,  Wu F Y. General lattice model of phase transitions. Phys Rev B, 1970, 2: 723--733 
 
[13]  Murakami J.  A state model for the multivariable Alexander polynomial. Pacific J Math, 1993, 157: 109--135 
 
[14]  Cuerno R, G\'omez C, L\'opez E, Sierra G.  The hidden quantum group of the 8-vertex free fermion model: q-Clifford algebras.  Phys Lett B, 1993, 307: 56--60 
 
[15]  Murakami J. The free-Fermion model in presense of field related to the quantum group Uq(sl2) of affine type and the multi-vatiable Alexander polynomial of links. Int J Mod Phys A, 1992,  7: 765--773 
 
[16]  Ruiz-Altaba M.  New solutions to the Yang-Baxter equation from two-dimensional representations of Uq(sl(2)) at roots of unity.  Phys Lett B, 1992, 279: 326--332 
 
[17]  Wang S K. Classification of eight-vertex solutions of the coloured Yang-Baxter equation. J Phys A: Math Gen,  1996, 29:  2259--2277 
 
[18]  Bazhanov V V,  Stroganov Y G. Hidden symmetry of free-fermion model. Theor Math Fiz, 1985, 62:  253--60 
 
[19]  Delius G W,  Gould M D, Zhang Yaozhong.  On the construction of trigonometric solutions of the Yang-Baxter equation.  Nucl Phys B, 1994,  432:  377--403 
 
[20]   Bracken A J, Gould M D,  Zhang Yaozhong, Delius G W. Solutions to the quantum Yang-Baxter equation with extra non-additive parameters. J Phys A, 1994,  27:  6551--6561 
 
[21]  Sun X D, Wang S K,  Wu K.  Classification of six-vertex-type solutions of the colored Yang-Baxter equation. J Math Phys, 1996, 36:  6043--6063 
 
[22]  Qiu  C H, Wang T Z,   Xu Y C. General solution of a kind of quantum coloured Yang-Baxter equation (I). J Math Anal,  2007, 326:  46--61 
 
[23]  Ma Z Q. Yang-Baxter Equation and Quantum Algebra.  Beijing: Science  Press, 1993 (in Chinese) 
 
[24]  Wu W -t. Basic Principles of Mechanical Theorem Proving in Geometry (Part on Elementary Geometries). Beijing: Science Press, 1984 (in Chinese); Mechanical Theorem Proving in Geometries,   Basic Principles.   Wien, New York: Springer, 1994 
 
[25]  Wu W -t. Basic principles of mechanical theorem proving in elementary geometries. J Syst Sci and Math Sci, 1984, 4: 207--235; also in: J Automat Reason, 1996, 2: 221--252 
 
[26]  Wu W -t. A zero structure theorem for polynomial-equations-solving and its applications.  Math Mech Res, Preprints, 1987, 1:  2--12 
 
[27]  Wu W -t. On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci Sinica, 1978, 21:  159--172
  |