Acta mathematica scientia,Series B ›› 2000, Vol. 20 ›› Issue (1): 76-78.
• Articles • Previous Articles Next Articles
PAN Lin-Jiang, ZHANG Ke-Min, ZHOU Guo-Fei
Online:
Published:
Supported by:
The project supported by NSFC.
Abstract:
Let G be a 2-connected graph of order n( 3). If I(u, v) S(u, v) or max {d(u), d(v)} n/2 for any two vertices u, v at distance two in an induced subgraph K1 ,3 or P3 of G , then G is hamiltonian. Here I(u, v) = |N(u)\N(v)|, S(u, v) denotes the number of edges of maximum star containing u, v as an induced subgraph in G.
Key words: Local condition, Hamilton cycle
CLC Number:
PAN Lin-Jiang, ZHANG Ke-Min, ZHOU Guo-Fei. LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS[J].Acta mathematica scientia,Series B, 2000, 20(1): 76-78.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://actams.apm.ac.cn/sxwlxbB/EN/
http://actams.apm.ac.cn/sxwlxbB/EN/Y2000/V20/I1/76
[1]Bondy J A, Murty U S R. Graph Theory with Applications. New York: Macmillan, London and Elsevier,1976 [2]Shi Ronghua. Some localization Hamiltonian conditions. J of Nanjing University of Science and Technol-ogy, 1994,(3): 19-23 [3]Shi Ronghua. 2-Neighborhoods and Hamiltonian conditions. J of Graph Theory, 1992,16: 267-271 [4]Fan G. New sufficient conditions for cycles in graphs. J Combin Theory Ser B, 1984,37: 221-227 [5]Ore O. A note on Hamiltonian circuits. Am Math Month, 1960,67: 55
Cited