|    
[1]  Kato T. Perturbation Theory for Linear Operators. 2nd ed. New York: Springer, 1976 
 
[2]  Kawashima S.  Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc Roy Soc Edinburgh, 1987, 106A(1/2): 169--194 
 
[3]  Lax P D. Hyperbolic systems of conservation laws, II. Comm Pure Appl Math, 1957, 10: 537--566 
 
[4]  Liu T -P, Yu S -H. Green's function for Boltzmann equation, 3-D waves. Bulletin, Inst Math Academia Sinica, 2006, 1(1): 1--78 
 
[5]  Liu T -P,  Zeng Y. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws.  Mem Amer Math Soc, 1997, 125(599): viii+120 pp. 
 
[6]  Liu T -P,  Zeng Y. Time-asymptotic behavior of wave propagation around a viscous shock profile. Comm Math Phys, 2009, 290(1): 23-82 
 
[7]  Liu T -P,  Zeng Y. Nonlinear stability and large time behavior of viscous shock wave with physical viscosity. Preprint 
 
[8]  Rellich F.  Perturbation Theory of Eigenvalue Problems, Lecture notes. New York University, 1953 
 
[9]  Shizuta Y,  Kawashima S. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math J, 1985, 14(2): 249--275 
 
[10]  Shu C -W,  Zeng  Y. High-order essentially non-oscillatory scheme for viscoelasticity with fading memory. Quart Appl Math, 1997, 55(3): 459--484 
 
[11]  Zeng Y. L1 asymptotic behavior of compressible, isentropic, viscous 1-D flow.  Comm Pure Appl Math, 1994,  47(8): 1053--1082 
 
[12]  Zeng Y. Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation.  Arch  Rational Mech Anal, 1999, 150(3): 225--279
  |