|    
[1]  Adjerid A, Flaherty J E,  Krivodonova L. A posteriori discontinuous Galerkin error estimation for hyperbolic   problems. Comput Methods Appl Mech Engrg, 2002, 191: 1097--1112 
 
[2]  Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: John Wiley & Sons,  2000 
 
[3]  Alouges F, De Vuyst F, Le Coq G, Lorin E. The reservoir technique: a way to make godunov schemes zero or very low diffusive. application to collela-glaz solver. Euro J Mech B, 2008, 27(6): 643--664 
 
[4]  Becker R, Rannacher R. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J Num Math, 1996, 4: 237--264 
 
[5]  Bressan A. Global solutions of systems of conservation laws by wave-front tracking. J Math Anal Appl, 1992, 170: 414--432 
 
[6]  Bressan A. Hyperbolic Systems of Conservation Laws: The one-dimensonal Cauchy Problem. Volume 20 of  Oxford Lecture Series in Mathematics and its Applications. Oxford: Oxford University Press, 2001 
 
[7]  Bressan A, Marson A. Error bounds for a deterministic version of the Glimm scheme. Arch Rat Mech Anal, 1998, 142(2): 155--176 
 
[8]  Chorin A J. Random choice solution of hyperbolic systems. J Comput Phys, 1976, 22(4): 517--533 
 
[9]  Cockburn B, Gau H. A posteriori error estimates of general numerical methods for scalar conservation laws. 
Mat Aplic Comp, 1995, 14(1): 37--47 
 
[10]  Colella P. Glimm's method for gas dynamics. SIAM J Sci Statist Comput, 1982, 3(1): 76--110 
 
[11]  Crasta G, Bressan A,  Piccoli B. Well posedness of the Cauchy problem for $n \times n$ systems of   conservation laws. Memoirs Amer Math Soc, 2000, 146 
 
[12]  Dafermos C. Hyperbolic Conservation Laws in Continuum Pysics. Volume 325 of Grundlehren der mathematischen Wissenschaften. New York: Springer-Verlag, 2000 
 
[13]  Dafermos C M. Polygonal approximation of solution to the initial value problem for a conservation law. 
J Math Anal Appl, 1972, 38: 33--41 
 
[14]  DiPerna R J. Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J Diff Eq, 1976, 20(1): 187--212 
 
[15]  Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965, 18: 697--715 
 
[16]  Gosse L, Makridakis C. Two a posteriori error estimates for one-dimensional scalar conservation laws. 
 SIAM J Numer Anal, 2000, 38(3): 964--988 
 
[17]  Harten A, Lax P D. A random choice finite difference scheme for hyperbolic conservation laws. SIAM J Numer Anal, 1981, 18(2): 289--315 
 
[18]  Hoff D, Smoller J. Error bounds for Glimm difference approximations for scalar  conservation laws. Trans Amer Math Soc, 1985, 289: 611--642 
 
[19]  Holden H,  Risebro N H. Front Tracking for Hyperbolic Conservation Laws. Volume 152 of Applied Mathematical Sciences. Berlin: Springer-Verlag, 2002 
 
[20]  Houston P,  Süli E.  Adaptive finite element approximation of hyperbolic problems//Barth T J, Deconinck H, ed.  
Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Volume 25 of  Lecture Notes in Computational Sciences and Engineering. Berlin: Springer Verlag,  2003: 269--344 
 
[21]  Hu J, LeFloch P G. L1 continuous dependence property for systems of conservation laws. Arch Ration Mech Anal, 2001, 151(1): 45--93 
 
[22]  Jiang G, Shu C W. Eficient implementation of weighted ENO schemes. J Comput Phy, 1996, 126: 202--228 
 
[23]  Johnson C, Szepessy A. Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm Pure Appl Math, 1995, 48: 199--234 
 
[24]  Kröner D, Ohlberger M. A posteriori error estimates for upwind finite volume schemes for conservation laws in multi dimensions. Math Comput, 1999, 69(229): 25--39 
 
[25]  Laforest M. A posteriori error estimate for front-tracking: systems of conservation laws. SIAM J Math Anal, 2004, 35(5): 1347--1370 
 
[26]  Laforest M. Mechanisms for error propagation and cancellation in Glimm's scheme without rarefactions. J Hyp Diff Eq, 2007, 4(3): 501--531 
 
[27]  Laforest M. An a posteriori error estimate for Glimm's scheme//Proceedings of  the 11th {I}nternational Conference on Hyperbolic {P}roblems: Theory, Numerics and Applications. 2008: 643--651 
 
[28]  Laforest M. Error estimators for nonlinear conservation laws and entropy production. 2009. In prepapration. 
 
[29]  Lax P. Hyperbolic systems of conservation laws II. Comm Pure Appl Math, 1957, 10: 537--566 
 
[30]  LeFloch P G. Propagating phase boundaries: formulation of the problem and  existence via the Glimm method. Arch Rational Mech Anal, 1993, 123(2): 153--197 
 
[31]  Liska R,  Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J Sci Comput, 2003, 25(3): 995--1017 
 
[32]  Liu T -P. Decay to {N}-wave solutions of general systems of nonlinear hyperbolic conservation laws. Comm Pure Appl Math, 1977, 30: 585--610 
 
[33]  Liu T -P. The deterministic version of the Glimm scheme. Comm Math Phys, 1977, 57: 135--148 
 
[34]  Liu T -P,  Yang T. L1 stability for $2 \times 2$ systems of hyperbolic conservation laws. J Amer Math Soc, 1999, 12(3): 729--774 
 
[35]  Lucier B J. Error bounds for the methods of Glimm, Godunov and LeVeque. SIAM J Numer Anal, 1985, 22(6): 1074--1081 
 
[36]  Risebro N H. A front-tracking alternative to the random choice method. Proc Amer Math Soc, 1993, 117(4): 1125--1139 
 
[37]  Smoller J.Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1983 
 
[38]  Tadmor E. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J Numer Anal, 1991, 28: 891--906 
 
[39]  Yoon D, Kim H J, Hwang W. Adaptive mesh refinement for weighted essentially non-oscillatory  schemes. 
Bull Korean Math Soc, 2008, 45(4): 781--795
  |