|   [1] Chen G Y, Huang X X, Yang X Q. Vecotr Optimization, Set-Valued and Variational Analysis. Berlin: Springer-Verlag, 2005 
[2] Chiang Y, Chadli O, Yao J C. Generalized vector equilibrium problems with trifunctions. J Global Optim, 2004, 30: 135--154 
[3] Flores B F. Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM J Optim, 2000, 11: 675--690 
[4] Fang Y P, Hu R, Huang N J. Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints Programming. Comput Math Appl, 2008, 50: 89--100 
[5] Huang L G. The solution sets and connectedness for weak vector variational inequalities. Acta Mathematica Scientia, 2009, 29A(1): 114--120 
[6] Huang X X, Teo K L, Yang X Q. Calmness and exact penalization in vector optimization with cone constraints. Comput Optim Appl, 2006, 35: 47--67 
  
[7] Huang X X, Yang X Q. Generalized Levitin-Polyak well-posedness in constrained optimization. SIAM J Optim, 2006, 17: 243--258 
[8] Huang X X, Yang X Q. Levitin-Polyak well-posedness of constrained vector optimization problems. J Glob Optim, 2007, 37: 287--304 
[9] Huang X X, Yang X Q. Levitin-Polyak well-posedness in generalized variational inequality problemes with functional constraints. J Ind Manag Optim, 2007, 3: 671--684 
[10] Kuratowski K. Topology Part I and Part II. New York: Academic Press, 1968 
[11] Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problems. Soviet Math Dokl, 1966, 7: 764--767 
[12] Li S J, Teo K L, Yang X Q. Gap function and existence of solutions to generlized vector quasi-equilibrium problems. J Glob Optim, 2006, 34: 427--440 
[13] Li S J, Li M H. Levitin-Polyak well-posedness of vector equilibrium problems. Math Methods Oper Res, accepted 
[14] Tykhonov A N. On the stability of the functional optimization problem. USSR Compt Math Math Phys, 1966, 6: 28--33 
[15] Xu Z, Zhu D L, Huang X X. Levitin-Polyak well-posedness in generalized vector variational inequality problems with functional constraints. Math Methods Oper Res, 2008, 67: 505--524  |