|   [1] Brennen C E. Fundamentals of Multiphase Flow. New York: Cambridge Univ Press, 2005 
 
[2] Ishii M. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Paris: Eyrolles, 1975 
 
[3] Prosperetti A, Tryggvason G, eds. Computational Methods for Multiphase Flow. New York: Cambridge Univ Press, 2007 
 
[4] Evje S, Fjelde K -K. Hybrid flux-splitting schemes for a two-phase flow model. J Comp Phys, 2002, 175(2): 
674–701 
 
[5] Evje S, Fjelde K -K. Relaxation schemes for the calculation of two-phase flow in pipes. Math Comp 
Modelling, 2002, 36: 535–567 
[6] Evje S, Fjelde K -K. On a rough AUSM scheme for a one-dimensional two-phase model. Comp Fluids, 2002, 32(10): 1497–1530 
 
[7] Evje S, Flatten T. On the wave structure of two-phase flow models. SIAM J Appl Math, 2007, 67(2): 487–511 
 
[8] Faille S, Heintze E. A rough finite volume scheme for modeling two-phase flow in a pipeline. Comp Fluids, 
1999, 28: 213–241 
 
[9] Fjelde K -K, Karlsen K -H. High-resolution hybrid primitive-conservative upwind schemes for the drift 
flux model. Comp Fluids, 2002, 31: 335–367 
 
[10] Evje S, Karlsen K H. Global existence of weak solutions for a viscous two-phase model. J Di?er Equ, 2008, 
245: 2660–2703 
 
[11] Evje S, Karlsen K H. Global weak solutions for a viscous liquid-gas model with singular pressure law. 
http://www.irisresearch.no/docsent/emp.nsf/wvAnsatte/SEV. 
 
[12] Yao L, Zhu C J. Free boundary value problem for a viscous two-phase model with mass-dependent viscosity. J Differ Equ, 2009, 247: 2705–2739 
 
[13] Evje S, Flatten T, Friis H A. Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum. Nonlinear Anal, 2009, 70: 3864–3886 
 
[14] Fang D Y, Zhang T. Compressible Navier-Stokes equations with vacuum state in one dimension. Comm 
Pure Appl Anal, 2004, 3(4): 675–694 
 
[15] Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coeffcient and vacuum. 
Comm Math Phys, 2002, 230: 329–363 
 
[16] Guo Z H, Zhu C J. Remarks on one-dimensional compressible Navier-Stokes equations with Density- 
Dependent viscosity and vacuum. Acta Mathematica Sinica, English Series, 2010, 26(10): 2615–2030 
 
[17] Okada M, Matusu-Necasova S, Makino T. Free-boundary problem for the equation of one-dimensional 
motion of compressible gas with densitydependent viscosity. Ann Univ Ferrara Sez VII (N S), 2002, 48: 
1–20 
 
[18] Yang T, Yao Z -A, Zhu C -J. Compressible Navier-Stokes equations with densitydependent viscosity and 
vacuum. Comm Partial Di?er Equ, 2001, 26: 965–981 
 
[19] Yang T, Zhao H -J. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with 
density-dependent viscosity. J Di?er Equ, 2002, 184: 163–184 
 
[20] Vong S W, Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coeffcient 
and vacuum II. J Differ Equ, 2003, 192: 475–501  |