[1] |
Shuxiong Zhang, Jie Xiong.
ON THE EMPTY BALLS OF A CRITICAL OR SUBCRITICAL BRANCHING RANDOM WALK*
[J]. Acta mathematica scientia,Series B, 2024, 44(5): 2051-2072.
|
[2] |
Xiaoyu XIA, Litan YAN, Qing YANG.
THE LONG TIME BEHAVIOR OF THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS WITH LINEAR SELF-REPELLING DRIFT
[J]. Acta mathematica scientia,Series B, 2024, 44(2): 671-685.
|
[3] |
Wenyi Pei, Litan Yan, Zhenlong Chen.
HARNACK TYPE INEQUALITIES FOR SDES DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH MARKOVIAN SWITCHING*
[J]. Acta mathematica scientia,Series B, 2023, 43(3): 1403-1414.
|
[4] |
Xiuwei YIN.
AN INTEGRATION BY PARTS FORMULA FOR STOCHASTIC HEAT EQUATIONS WITH FRACTIONAL NOISE*
[J]. Acta mathematica scientia,Series B, 2023, 43(1): 349-362.
|
[5] |
Soukaina DOUISSI, Khalifa ES-SEBAIY, Soufiane MOUSSATEN.
ASYMPTOTICS OF THE CROSS-VARIATION OF YOUNG INTEGRALS WITH RESPECT TO A GENERAL SELF-SIMILAR GAUSSIAN PROCESS
[J]. Acta mathematica scientia,Series B, 2020, 40(6): 1941-1960.
|
[6] |
Qian YU.
A LIMIT LAW FOR FUNCTIONALS OF MULTIPLE INDEPENDENT FRACTIONAL BROWNIAN MOTIONS
[J]. Acta mathematica scientia,Series B, 2020, 40(3): 734-754.
|
[7] |
Heyu LI, Xia CHEN.
PRECISE MOMENT ASYMPTOTICS FOR THE STOCHASTIC HEAT EQUATION OF A TIME-DERIVATIVE GAUSSIAN NOISE
[J]. Acta mathematica scientia,Series B, 2019, 39(3): 629-644.
|
[8] |
Johanna GARZÓN, Samy TINDEL, Soledad TORRES.
EULER SCHEME FOR FRACTIONAL DELAY STOCHASTIC DIFFERENTIAL EQUATIONS BY ROUGH PATHS TECHNIQUES
[J]. Acta mathematica scientia,Series B, 2019, 39(3): 747-763.
|
[9] |
Yuecai HAN, Yifang SUN.
SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS
[J]. Acta mathematica scientia,Series B, 2018, 38(2): 681-694.
|
[10] |
Junfeng LIU, Ciprian A. TUDOR.
STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE: EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY
[J]. Acta mathematica scientia,Series B, 2017, 37(6): 1545-1566.
|
[11] |
Guangjun SHEN, Xiuwei YIN, Litan YAN.
ERRATUM TO:LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION
[J]. Acta mathematica scientia,Series B, 2017, 37(4): 1173-1176.
|
[12] |
Jing CUI, Litan YAN.
CONTROLLABILITY OF NEUTRAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION
[J]. Acta mathematica scientia,Series B, 2017, 37(1): 108-118.
|
[13] |
Guangjun SHEN, Xiuwei YIN, Litan YAN.
LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION
[J]. Acta mathematica scientia,Series B, 2016, 36(2): 394-408.
|
[14] |
SHEN Guang-Jun, YAN Li-Tan, LIU Jun-Feng.
POWER VARIATION OF SUBFRACTIONAL BROWNIAN MOTION AND APPLICATION
[J]. Acta mathematica scientia,Series B, 2013, 33(4): 901-912.
|
[15] |
WANG Bao-Bin.
CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2
[J]. Acta mathematica scientia,Series B, 2011, 31(5): 1694-1708.
|