[1] Adams D, Xiao J. Nonlinear potential analysis on Morrey spaces and their capacities. Indiana Univ Math, 2004, 53:1629-1663 [2] Akbulut1 A, Guliyev V, Omarova M. Marcinkiewicz integrals associated with Schrödinger operator and their commutators on vanishing generalized Morrey spaces. Boundary Value Problems, 2017, 2017:Art 121 [3] Bui T A. The weighted norm inequalities for Riesz transforms of magnetic Schrödinger operators. Differential Integral Equations, 2010, 23:811-826 [4] Bui T A. Weighted estimates for commutators of some singular integrals related to Schrödinger operators. Bulletin des Sciences Mathematiques, 2014, 138(2):270-292 [5] Bongioanni B, Harboure E, Salinas O. Riesz transform related to Schrödinger operators acting on BMO type spaces. J Math Anal Appl, 2009, 357(2):115-131 [6] Bongioanni B, Harboure E, Salinas O. Classes of weights related to Schrödinger operators. J Math Anal Appl, 2011, 373:563-579 [7] Coulhon T, Duong X T. Riesz transforms for 1≤ p ≤ 2. Trans Amer Math Soc, 1999, 351(3):1151-1169 [8] Duong X T, Xiao J, Yan L. Old and new Morrey spaces with heat kernel bounds. J Fourier Anal Appl, 2007, 13:87-111 [9] Dziubánski J, Garrigos G, Martinez T, Torrea J, Zienkiewicz J. BMO spaces related to Schrödinger operators with potentials satisfying reverse Hölder inequality. Mat Z, 2005, 49(2):329-356 [10] Dziubánski J, Zienkiewicz J. Hp spaces for Schrödinger operators. Fourier Anal Related Top, 2002, 56:45-53 [11] Feuto J, Fofana I, Koua K. Espaces de fonctions moyenne fractionnaire intgrables sur les groupes localement compacts. Afrika Mat, 2003, 3(13):73-91 [12] Feuto J, Fofana I, Koua K. Integrable fractional mean functions on spaces of homogeneous type. Afr Diaspora J Math, 2010, 9(1):8-30 [13] Feuto J. Norm inequalities in generalized morrey spaces. J Fourier Anal Appl, 2014, 20(4):896-909 [14] Fofana I. Étude d'une classe d'espaces de fonctions contenant les esp aces de Lorentz. Afrika Mat, 1988, 1(2):29-50 [15] Grafakos L. Classical Fourier Analysis. Graduate Texts in Mathematics 250. 3rd ed. New York:Springer, 2014 [16] Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282:219-231 [17] Kurata K, Sugano S. Estimate of the fundamental solution for magnetic Schrödinger operators and their applications. Tohoku Math J, 2000, 52:367-382 [18] Komori Y, Shirai S. Weighted Morrey spaces and a singular integral operator. Math Nachr, 2009, 282:219-231 [19] Li P, Wan X, Zhang C. Schrödinger type operators on generalized Morrey spaces. J Inequal Appl, 2015, 2015:Art 229 [20] Liu Y. The weighted estimates for the operators Vα(-△G+V)-β and Vα▽(-△G+V)-β on the stratified Lie group G. J Math Anal Appl, 2009, 349:235-244 [21] Liu Y, Wang L. Boundedness for Riesz transform associated with Schrödinger operators and its commutator on weighted Morrey spaces related to certain nonnegative potentials. J Inequal Appl, 2014, 2014:Art 194 [22] Ly F K. Second order Riesz transforms associated to the Schrödinger operator for p ≤ 1. J Math Anal Appl, 2014, 410(1):391-402 [23] Morrey C. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43:126-166 [24] Muckenhoupt B, Wheeden R L. Weighted norm inequalities for fractional integrals. Trans Amer Math Soc, 1974, 192:261-274 [25] Peetre J. On the theory of Lp,λ spaces. J Funct Anal, 1969, 4:71-87 [26] Pan G, Tang L. Solvability for Schrödinger equations with discontinuous coefficients. J Funct Anal, 2016, 270:88-133 [27] Ren B, Wang H. Boundedness of higher order Riesz transforms associated with Schrödinger type operator on generalized Morrey spaces. J Nonlinear Sci Appl, 2017, 10:2757-2766 [28] Samko N. Weighted Hardy and singular operators in Morrey spaces. J Math Anal Appl, 2009, 350:56-72 [29] Shen Z. Lp estimates for Schrödinger operators with certain potentials. Ann Inst Fourier, 1995, 45:513-546 [30] Shen Z. Estimates in Lp for magnetic Schrödinger operators. Indiana Univ Math J, 1996, 45:817-841 [31] Song L, Yang L. Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J Funct Anal, 2010, 259:1466-1490 [32] Sugano S. Estimates for the operators Vα(-△ + V)-β and Vα▽(-△ + V)-β with certain nonnegative potentials V. Tokyo J Math, 1988, 21:441-452 [33] Tang L, Dong J. Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials. J Math Anal Appl, 2009, 355:101-109 [34] Xiao J. Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn Partial Differ Equ, 2007, 4:227-245 [35] Zhong J. Harmonic Analysis for Some Schrödinger Type Operators[D]. Princeton University, 1993 |