Acta mathematica scientia,Series B ›› 2020, Vol. 40 ›› Issue (5): 1352-1390.doi: 10.1007/s10473-020-0512-z
• Articles • Previous Articles Next Articles
Jing JIN1, Noor REHMAN2, Qin JIANG1
Received:2018-12-11
															
							
																	Revised:2020-05-12
															
							
															
							
																	Online:2020-10-25
															
							
																	Published:2020-11-04
															
						Contact:
								Jing JIN   
																	E-mail:jinjing@hgnu.edu.cn
																					Supported by:CLC Number:
Jing JIN, Noor REHMAN, Qin JIANG. NONLINEAR STABILITY OF RAREFACTION WAVES FOR A COMPRESSIBLE MICROPOLAR FLUID MODEL WITH ZERO HEAT CONDUCTIVITY[J].Acta mathematica scientia,Series B, 2020, 40(5): 1352-1390.
|  [1] Duan R. Global solutions for the 1-D compressible micropolar fluid model with zero heat conductivity. J Math Anal Appl, 2018, 463:477-495 [2] Eringen A C. Theory of micropolar fluids. J Math Mech, 1966, 16:1-18 [3] Eringen A C. Theory of themomicro fluids. J Math Anal Appl, 1972, 38:480-496 [4] Mujakovic N. One-dimensional flow of a compressible viscous micropolar fluid:a local exsitence theorem. Glasnil Mathematicki, 1998, 33(53):71-91 [5] Duan R. Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal RWA, 2018, 42:71-92 [6] Lukaszewicz G. Micropolar Fluids. Theory and applications, Modeling and Simulation in Science, Engineering and Technology. Baston:Birkhauser, 1999 [7] Eringen A C. Microcontinuum Field Theories:I. Foundations and Solids. Berlin:Springer, 1999 [8] Liu Q Q, Yin H Y. Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model. Nonlinear Anal Theory Methods Appl, 2017, 149:41-55 [9] Jin J, Duan R. Stability of Rarefaction waves for 1-D compressible viscous micropolar fluid model. J Math Anal Appl, 2017, 450:1123-1143 [10] Cui H B, Yin H Y. Stationary solutions to the one-dimensional micropolar fluid model in a half line:Existence, stability and convergence rate. J Math Anal Appl, 2017, 449:464-489 [11] Kawashima S, Okada M. Smooth global solutions for one-dimensional equations in magnetohydrodynamics. Proc Japan Acad Ser A, 1982, 58:384-387 [12] Matsumura A, Nishihara K. Asymptotic toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3:1-13 [13] Matsumura A, Nishihara K. Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992, 144:325-335 [14] Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid:a global existence theorem. Glas Mat Ser Ⅲ, 1998, 33(53):199-208 [15] Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid:regularity of the solution. Rad Mat, 2001, 10:181-193 [16] Mujaković N. Global in time estimates for one-dimensional compressible viscous micropolar fluid model. Glas Mat Ser Ⅲ, 40(60):103-120 [17] Mujaković N. One-dimensional flow of a compressible viscous micropolar fluid:stabilization of the solution//Proceedings of the Conference on Applied Mathematics and Scientific Computing. Dordrecht:Springer, 2005:253-262 [18] Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model:a local existence theorem. Ann Univ Ferrara Sez VⅡ Sci Mat, 2007, 53(2):361-379 [19] Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model:regularity of the solution. Bound Value Probl, 2008, Article ID 189748 [20] Mujaković N. Nonhomogenerous boundary value problem for one-dimensional compressible viscous micropolar fluid model:a global existence theorem. Math Inequal Appl, 2009, 12:651-662 [21] Mujaković N. One-dimensional compressible viscous micropolar fluid model:stabilization of the solution for the Cauchy problem. Bound Value Probl, 2010, Article ID 796065 [22] Chen M T. Global strong solutions for the viscous, micropolar, compressible flow. J Partial Differ Equ, 2011, 24:158-164 [23] Qin Y, Wang T, Hu G. The Cauchy problem for a 1D compressible viscous micropolar fluid model:analysis of the stabilization and the regularity. Nonlinear Anal Real World Appl, 2012, 13:1010-1029 [24] Huang L, Nie D Y. Exponential stability for a one-dimensional compressible viscous micropolar fluid. Math Methods Appl Sci, 2015, 38:5197-5206 [25] Mujaković N, Črnjarić-Žic N. Global solution to 1-D model of a compressible viscous micropolar heatconducting fluid with free boundary. Acta Math Sci, 2016, 36B(6):1541-1576 [26] Zheng L Y, Chen Z Z, Zhang S N. Asymptotic stability of a composite wave for the one-dimensional compressible micropolar fluid model without viscosity. J Math Anal Appl, 2018, 468:865-892 [27] Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:a local existence theorem. Bound Value Probl, 2012, 69:1-25 [28] Chen M T. Blow up criterion for viscous, compressible micropolar fluids with vacuum. Nonlinear Anal Real World Appl, 2012, 13(2):850-859 [29] Chen M T, Huang B, Zhang J W. Blow up criterion for the three-dimensional equations of compressible viscous micropolar fluids with vacuum. Nonlinear Anal Theory Methods Appl, 2013, 79:1-11 [30] Mujaković N, Dražić I. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:uniqueness of a generalized solution. Bound Value Probl, 2014, 226:1-25 [31] Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:a global existence theorem. Bound Value Probl, 2015, 98:1-25 [32] Dražić I, Mujaković N. 3-D flow of a compressible viscous micropolar fluid with spherical symmetry:large time behavior of the solution. J Math Anal Appl, 2015, 431:545-568 [33] Chen M T, Xu X Y, Zhang J W. Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum. Commun Math Sci, 2015, 13:225-247 [34] Liu Q Q, Zhang P X. Optimal time decay of the compressible micropolar fluids. J Differential Equations, 2016, 260:7634-7661 [35] Wu Z G, Wang W K. The point estimates of diffusion wave of the compressible micropolar fluids. J Differential Equations, 2018, 265:2544-2576 [36] Huang L, Kong C X. Global behavior for compressible viscous micropolar fluid with spherical symmetry. J Math Anal Appl, 2016, 443:1158-1178 [37] Dražić I, Simčić L, Mujaković N.3-D flow of a compressible viscous micropolar fluid with spherical symmetry:Regularity of the solution. J Math Anal Appl, 2016, 438:162-183 [38] Mujaković N, Črnjarić-Žic N. Global solution to 3D problem of a compressible viscous micropolar fluid with spherical symmetry and a free boundary. J Math Anal Appl, 2017, 449:1637-1669 [39] Su J R. Low Mach number limit of a compressible micropolar fluid model. Nonlinear Anal Real World Appl, 2017, 38:21-34 [40] Su J R. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete Contin Dyn Syst, 2017, 37(6):3423-3434 [41] Su J R. Incompressible limit of a compressible micropolar fluid model with general initial data. Nonlinear Anal, 2016, 132:1-24 [42] Liu T, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1998, 118:451-465 [43] Huang F M, Li J, Matsumura. Akitaka Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197(1):89-116 [44] Huang F M, Wang T. Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana Univ Math J, 2016, 65(6):1833-1875 [45] Huang F M, Wang Y, Wang Y, et al. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45(3):1741-1811 [46] Huang F M, Wang Y, Yang T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203(2):379-413 [47] Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data. Commun Inf Syst, 2013, 13(2):211-246 [48] Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations:I. Superposition of rarefaction waves and contact discontinuity. Kinet Relat Models, 2010, 3(4):685-728 [49] Huang F M, Li X. Convergence to the rarefaction wave for a model of radiating gas in one-dimension. Acta Math Appl Sin, 2016, 329(2):239-256 [50] Huang F M, Li M, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44:1742-1759 [51] Li M J, Wang T, Wang Y. The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients. Anal Appl (Singap), 2015, 13(5):555-589 [52] Huang F M, Qin X. Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes quations under large perturbation. J Differential Equations, 2009, 246:4077-4096 [53] Jiu Q S, Wang Y, Xin Z P. Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity. Comm Partial Differential Equations, 2011, 36(4):602-634 [54] Jiu Q S, Wang Y, Xin Z P. Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity. SIAM J Math Anal, 2013, 45(5):3194-3228 [55] Li L, Wang Y. Stability of planar rarefaction wave to two-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2018, 50(5):4937-4963 [56] Li L, Wang T, Wang Y. Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations. Arch Rational Mech Anal, 2018, 230:911-937 [57] Wang Z A, Zhu C J. Stability of the rarefaction wave for the generalized Kdv-Burgers equation. Acta Math Sci, 2002, 22B(3):319-328 [58] Zhu C J. Asymptotic behavior of solution for p-system with relaxation. J Differential Equations, 2002, 180(2):273-306 [59] Duan R, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361(1):453-493  | 
									
										
  | 
								||