Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (6): 1839-1858.doi: 10.1007/s10473-021-0603-5
• Articles • Previous Articles Next Articles
Kehe ZHU
Received:
2021-02-18
Revised:
2021-07-05
Online:
2021-12-25
Published:
2021-12-27
Supported by:
CLC Number:
Kehe ZHU. THE BEREZIN TRANSFORM AND ITS APPLICATIONS[J].Acta mathematica scientia,Series B, 2021, 41(6): 1839-1858.
[1] | Ahern P. On the range of the Berezin transform. J Funct Anal, 2004, 215:206-216 |
[2] | Ahern P, Flores M, Rudin W. An invariant volume-mean-value property. J Funct Anal, 1993, 111:380-397 |
[3] | Aleman A, Pott S, Reguera C. Sarason conjecture on the Bergman space. Int Math Res Not IMRN, 2017, 14:4320-4349 |
[4] | Arazy J, Englis M. Iterates and boundary behavior of the Berezin transform. Ann Inst Fourier, 2001, 51:1101-1133 |
[5] | Arazy J, Fisher S, Peetre J. Hankel operators on weighted Bergman spaces. Amer Math J, 1988, 110:989-1053 |
[6] | Arazy J, Zhang G. Invariant mean value and harmonicity in Cartan and Siegel domains//Interactions Between Functional Analysis, Harmonic Analysis, and Probability, (Columbia, MO, 1994). Lecture Notes in Pure and Applied Math 175. New York:Marcel Dekker, 1996:19-40 |
[7] | Axler S, Cuckovic Z. Commuting Toeplitz operators with harmonic symbols. Integral Equations Operator Theory, 1991, 14:1-12 |
[8] | Axler S, Zheng D. Compact operators via the Berezin transform. Indiana Univ Math J, 1998, 47:387-400 |
[9] | Axler S, Zheng D. The Berezin transform on the Toeplitz algebra. Studia Math, 1998, 127:113-136 |
[10] | Bauer W, Coburn L, Isralowitz J. Heat flow, BMO, and compactness of Toeplitz operators. J Funct Anal, 2010, 259:57-78 |
[11] | Bauer W, Isralowitz J. Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp. J Funct Anal, 2012, 263:1323-1355 |
[12] | Bekolle D, Berger C, Coburn L, Zhu K. BMO in the Bergman metric on bounded symmetric domains. J Funct Anal, 1990, 93:64-89 |
[13] | Berezin F. Wick and anti-Wick symbols of operators (Russian). Mat Sb, 1971, 86:578-610 |
[14] | Berezin F. Covariant and contra-variant symbols of operators. Math USSR-Izv, 1972, 6:1117-1151 |
[15] | Berezin F. Quantization. Math USSR-Izv, 1974, 8:1109-1163 |
[16] | Berezin F. Quantization of complex symmetric spaces (Russian). Izv Akad Ser Mat, 1975, 39:363-402 |
[17] | Berezin F. General concept of quantization. Comm Math Phys, 1975, 40:153-174 |
[18] | Berezin F. Introduction to Superanalysis. Dordrecht:Reidel, 1987 |
[19] | Berger C, Coburn L. Toeplitz operators and quantum mechanics. J Funct Anal, 1986, 68:273-299 |
[20] | Berger C, Coburn L. Toeplitz operators on the Segal-Bargmann space. Trans Amer Math Soc, 1987, 301:813-829 |
[21] | Berger C, Coburn L. Heat flow and Berezin-Toeplitz estimates. Amer J Math, 1994, 116:563-590 |
[22] | Berger C, Coburn L, Zhu K. BMO in the Bergman metric on the classical domains. Bull Amer Math Soc, 1987, 17:133-136 |
[23] | Berger C, Coburn L, Zhu K. Function theory on Cartan domains and Berezin-Toeplitz symbol calculus. Amer J Math, 1988, 110:921-953 |
[24] | Bommier-Hato H. Lipschitz estimates for the Berezin transform. J Funct Spaces Appl, 2010, 8:103-128 |
[25] | Bommier-Hato H. Derivatives of the Berezin transform. J Funct Spaces Appl, 2012, 15 pages |
[26] | Bommier-Hato H, Youssfi E, Zhu K. Sarason's Toeplitz product problem for a class of Fock spaces. Bull Sci Math, 2017, 141:408-442 |
[27] | H. Cho, J. Park, and K. Zhu, Products of Toeplitz operators on the Fock space. Proc Amer Math Soc, 2014, 142:2483-2489 |
[28] | Coburn L. A Lipschitz estimate for Berezin's operator calculus. Proc Amer Math Soc, 2005, 133:127-131 |
[29] | Coburn L. Sharp Berezin-Lipschitz estimates. Proc Amer Math Soc, 2007, 135:1163-1168 |
[30] | Coburn L. Berezin-Toeplitz quantization//Algebraic Methods in Operator Theory. Boston:Birkhauser, 1994:101-108 |
[31] | Coburn L, Isralowitz J, Li B. Toeplitz operators with BMO symbols on the Segal-Bargmann space. Trans Amer Math Soc, 2011, 363:3015-3030 |
[32] | Coburn L, Li B. Directional derivative estimates for Berezin's operator calculus. Proc Amer Math Soc, 2008, 136:641-649 |
[33] | Cuckovic Z, Li B. Berezin Transform, Mellin Transform and Toeplitz Operators. Complex Anal Oper Theory, 2012, 6:189-218 |
[34] | Davidson K, Douglas R. The generalized Berezin transform and commutator ideals. Pacific J Math, 2005, 222:29-56 |
[35] | Duren P, Schuster A. Bergman Spaces. American Mathematical Society, 2004 |
[36] | Englis M. Functions invariant under the Berezin transform. J Funct Anal, 1994, 121:233-254 |
[37] | Englis M. Toeplitz operators and the Berezin transform on H2. Linear Alg Appl, 1995, 223/224:171-204 |
[38] | Englis M. Berezin transform and the Laplace-Beltrami operator. Algebra i Analiz, 1995, 7:176-195 |
[39] | Englis M. Asymptotics of the Berezin transform and quantization on planar domains. Duke Math J, 1995, 79:57-76 |
[40] | Englis M. Berezin quantization and reproducing kernels on complex domains. Trans Amer Math Soc, 1996, 348:411-479 |
[41] | Englis M. Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integral Equations Operator Theory, 1999, 33:426-455 |
[42] | Englis M, Otáhalová R. Covariant derivatives of the Berezin transform. Trans Amer Math Soc, 2011, 363:5111-5129 |
[43] | Englis M, Zhang G. On the derivatives of the Berezin transform. Proc Amer Math Soc, 2006, 134:2285- 2294 |
[44] | Le Floch Y. A Brief Introduction to Berezin-Toeplitz Operators on Compact Kähler Manifolds. CRM Short Courses. Springer, 2018 |
[45] | Garnett J. Bounded Analytic Functions. New York:Academic Press, 1981 |
[46] | Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. New York:Springer-Verlag, 2000 |
[47] | Ioos L, Kaminker V, Polterovich L, Shmoish D. Spectral aspects of the Berezin transform. preprint, 2020 |
[48] | Ioos L, Lu W, Ma X, Marinescu G. Berezin-Toeplitz quantization for eigenstates of the Bochner-Laplacian on symplectic manifolds. J Geom Anal, 2020, 30:2615-2646 |
[49] | Janson S, Peetre J, Rochberg R. Hankel forms and the Fock space. Revista Mat Ibero-Amer, 1987, 3:58-80 |
[50] | Karabegov A, Schlichenmaier M. Identification of Berezin-Toeplitz deformation quantization. J Reine Angew Math, 2001, 540:49-76 |
[51] | Kilic S. The Berezin symbol and multipliers of functional Hilbert spaces. Proc Amer Math Soc, 1995, 123:3687-3691 |
[52] | Korenblum B, Zhu K H. An application of Tauberian theorems to Toeplitz operators. J Operator Theory, 1995, 33:353-361 |
[53] | Lee J. Properties of the Berezin transform of bounded functions. Bull Austral Math Soc, 1999, 59:21-31 |
[54] | Li B. The Berezin transform and Laplace-Beltrami operator. J Math Anal Appl, 2007, 327:1155-1166 |
[55] | Li B. The Berezin transform and m-th order Bergman metric. Trans Amer Math Soc, 2011, 363:3031-3056 |
[56] | Luecking D, Zhu K. Composition operators belonging to the Schatten ideals. Amer J Math, 1992, 114:1127-1145 |
[57] | Ma X, Marinescu G. Berezin-Toeplitz quantization on Kähler manifolds. J Reine Angew Math, 2012, 662:1-56 |
[58] | Ma P, Yan F, Zheng D, Zhu K. Products of Hankel operators on the Fock space. J Funct Anal, 2019, 277:2644-2663 |
[59] | Ma P, Yan F, Zheng D, Zhu K. Mixed products of Hankel and Toeplitz operators on the Fock space. J Operator Theory, 2020, 84:35-47 |
[60] | MacCluer B. Compact composition operators on Hp(Bn). Mich Math J, 1985, 32:237-248 |
[61] | MacCluer B, Shapiro J. Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian Math J, 1986, 38:878-906 |
[62] | Nam K, Zheng D, Zhong C. m-Berezin transform and compact operators. Rev Mat Iberoam, 2006, 22:867-892 |
[63] | Nazarov F. A counterexample to Sarason's conjecture. preprint, 1997 |
[64] | Nordgren E, Rosenthal P. Boundary values of Berezin symbols. Operator Theory Advances and Applications, 1994, 73:362-368 |
[65] | Peetre J. The Berezin transform and Ha-plitz operators. J Operator Theory, 1990, 24:165-186 |
[66] | Rao N V. The range of the Berezin transform. J Math Sci (NY), 2018, 228(6):684-694 |
[67] | Sarason D. Products of Toeplitz operators//Havin V P, Nikolski N K, eds. Linear and Complex Analysis Problem Book 3, Part I, Lecture Notes in Math 1573. Berlin:Springer, 1994:318-319 |
[68] | Schlichenmaier M. Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv Math Phys, 2010:927280 |
[69] | Shapiro J. The essential norm of a composition operator. Ann of Math, 1987, 12:375-404 |
[70] | Shklyarov D, Zhang G. The Berezin transform on the quantum unit ball. J Math Physics, 2003, 44(4344):4344-4373 |
[71] | Stroethoff K. The Berezin transform and operators on spaces of analytic functions//Linear operators (Warsaw, 1994), Banach Center Publ 38. Warsaw:Polish Acad Sci, 1997:361-380 |
[72] | Stroethoff K, Zheng D. Toeplitz and Hankel operators on Bergman spaces. Trans Amer Math Soc, 1992, 329:773-794 |
[73] | Stroethoff K, Zheng D. Products of Hankel and Toeplitz operators on the Bergman space. J Funct Anal, 1999, 169:289-313 |
[74] | Suarez D. Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev Mat Iberoam, 2004, 20:563-610 |
[75] | Suarez D. Approximation and the n-Berezin transform of operators on the Bergman space. J Reine Angew Math, 2005, 581:175-192 |
[76] | Suarez D. The essential norm of operators in the Toeplitz algebra on Ap(Bn). Indiana Univ Math J, 2007, 56:2185-2232 |
[77] | Untenberger A, Upmeier H. The Berezin transform and invariant differential operators. Comm Math Phys, 1994, 164:563-597 |
[78] | Zhang G. Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math, 1998, 97:371- 388 |
[79] | Zheng D. Hankel operators and Toeplitz operators on the Bergman space. J Funct Anal, 1989, 83:98-120 |
[80] | Zheng D. The distribution function inequality and products of Toeplitz operators and Hankel operators. J Funct Anal, 1996, 138:477-501 |
[81] | Zhu K. VMO, ESV, and Toeplitz operators on the Bergman space. Trans Amer Math Soc, 1987, 302:617-646 |
[82] | Zhu K. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J Operator Theory, 1988, 20:329-357 |
[83] | Zhu K. Schatten class Hankel operators on the Bergman space of the unit ball. Amer J Math, 1991, 113:147-167 |
[84] | Zhu K. Operator Theory in Function Spaces. American Mathematical Society, 2007 |
[85] | Zhu K. Analysis on Fock Spaces. New York:Springer, 2012 |
[86] | Zorboska N. The Berezin transform and radial operators. Proc Amer Math Soc, 2002, 131:793-800 |
[1] | Min He, Maofa Wang, Jiale Chen. GENERALIZED COUNTING FUNCTIONS AND COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES OF DIRICHLET SERIES [J]. Acta mathematica scientia,Series B, 2025, 45(2): 291-309. |
[2] | Ziyao Liu, Dashan Fan. CERTAIN OSCILLATING OPERATORS ON HERZ-TYPE HARDY SPACES [J]. Acta mathematica scientia,Series B, 2025, 45(2): 310-326. |
[3] | Lixia Feng, Yan Li, Zhiyu Wang, Liankuo Zhao. TOEPLITZ OPERATORS BETWEEN WEIGHTED BERGMAN SPACES OVER THE HALF-PLANE* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1707-1720. |
[4] | Zuoling Liu, Hasi Wulan. PRODUCT TYPE OPERATORS ACTING BETWEEN WEIGHTED BERGMAN SPACES AND BLOCH TYPE SPACES [J]. Acta mathematica scientia,Series B, 2024, 44(4): 1327-1336. |
[5] | Boyong Chen, Liangying Jiang. BIG HANKEL OPERATORS ON HARDY SPACES OF STRONGLY PSEUDOCONVEX DOMAINS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 789-809. |
[6] | Yong CHEN, Young Joo LEE. SUMS OF DUAL TOEPLITZ PRODUCTS ON THE ORTHOGONAL COMPLEMENTS OF FOCK-SOBOLEV SPACES [J]. Acta mathematica scientia,Series B, 2024, 44(3): 810-822. |
[7] | Jian CHEN. ON THE SOBOLEV DOLBEAULT COHOMOLOGY OF A DOMAIN WITH PSEUDOCONCAVE BOUNDARIES [J]. Acta mathematica scientia,Series B, 2024, 44(2): 431-444. |
[8] | Xiaosheng LIN, Dachun YANG, Sibei YANG, Wen YUAN. MAXIMAL FUNCTION CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BOTH NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING GAUSSIAN ESTIMATES AND BALL QUASI-BANACH FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2024, 44(2): 484-514. |
[9] | Wei QU, Tao QIAN, Ieng Tak LEONG, Pengtao LI. THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS [J]. Acta mathematica scientia,Series B, 2024, 44(2): 567-582. |
[10] | Wei Ding, Yan Tang, Yueping Zhu. THE BOUNDEDNESS OF OPERATORS ON WEIGHTED MULTI-PARAMETER LOCAL HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2024, 44(1): 386-404. |
[11] | Shanli YE, Guanghao FENG. A DERIVATIVE-HILBERT OPERATOR ACTING ON HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2398-2412. |
[12] | Ali Abkar. MEAN APPROXIMATION BY DILATATIONS IN BERGMAN SPACES ON THE UPPER HALF-PLANE* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2204-2214. |
[13] | Yanyan han, Huoxiong wu. THE FRACTIONAL TYPE MARCINKIEWICZ INTEGRALS AND COMMUTATORS ON WEIGHTED HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 1981-1996. |
[14] | Xiaohe Hu. COMPLEX SYMMETRIC $C_0$-SEMIGROUPS ON THE WEIGHTED HARDY SPACES $H_\gamma(\mathbb{D})$* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2121-2132. |
[15] | Maofa Wang, Qi Wu, Kaikai Han. COMPLEX SYMMETRY OF TOEPLITZ OPERATORS OVER THE BIDISK∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1537-1546. |
|