[1] Aleman A, Olsen J F, Saksman E. Fourier multipliers for Hardy spaces of Dirichlet series. Int Math Res Not, 2016, 16:4368-4378 [2] Bailleul M, Lefèvre P, Rodríguez-Piazza L. Hardy-Orlicz spaces of Dirichlet series:an interpolation problem on abscissae of convergence. Int Math Res Not, https://doi.org/1093/imm/mz 242, to appear [3] Balasubramanian R, Calado B, Queffélec H. The Bohr inequality for ordinary Dirichlet series. Studia Math, 2006, 175:285-304 [4] Bayart F. Hardy spaces of Dirichlet series and their composition operators. Monats Heft Math, 2002, 136:203-226 [5] Bayart F. Compact composition operators on a Hilbert space of Dirichlet series. Illinois J Math, 2003, 47:725-743 [6] Bayart F, Brevig O. Composition operators and embedding theorems for some functions spaces of Dirichlet series. Math Z, 2019, 293:989-1014 [7] Bayart F, Queffélec H, Seip K. Approximation numbers of composition operators on Hp spaces of Dirichlet series. Ann Inst Fourier, 2016, 66(2):551-588 [8] Bohnenblust H F, Hille E. On the absolute convergence of Dirichlet series. Ann Math, 1931, 2:600-622 [9] Bohr H. Collected Mathematical Works. Folner E, Jessen B, ed. Copenhagen, 1952 [10] Bombieri E, Bourgain J. A remark on Bohr's inequality. Int Math Res Not, 2004, 80:4307-4330 [11] Bondarenko A, Brevig O, Saksman E, Seip K. Linear space properties of Hp spaces of Dirichlet series. Trans Amer Math Soc, 2019, 372:6677-6702 [12] Brevig O, Perfekt K. A mean counting function for Dirichlet series and compact composition operators. Adv Math, 2021, 385(1):107775 [13] Defant A, Garcia D, Maestre M, Sevilla-Peris P. Dirichlet Series and Holomorphic Functions in High Dimensions. Cambridge University Press, 2019 [14] Gordon J, Hedenmalm H. The composition operators on the space of Dirichlet series with square-summable coefficients. Michigan Math J, 1999, 46:313-329 [15] Hardy G H, Riesz M. The General Theory of Dirichlet Series. Second ed. Dover Phoenix Editions, 2005 [16] Harper A. Moments of random multiplicative functions, I:low moments, better than square-root cancellation, and critical multiplicative chaos. Forum Math, 2020, 8; Doi 10.1017/fmp.2019.7 [17] Hedenmalm H, Lindqvist P, Seip K. A Hilbert space of Dirichlet series and a system of dilated functions. Duke Math J, 1997, 86:1-36 [18] Helson H. Dirichlet Series. Regent Press Editions, 2005 [19] Helson H. Hankel forms. Studia Math, 2010, 198:79-83 [20] Kahane J P, Queffélec H. Ordre, convergence, et sommabilité des séries de Dirichlet. Ann Inst Fourier, 1997, 47(2):485-529 [21] Kayumov I R, Ponnusamy S. On a powered Bohr inequality. Ann Acad Sci Fenn Ser A I Math, 2019, 44:301-310 [22] Konyagin S, Queffélec H, Saksman E, Seip K. Riesz projection and bounded mean oscillation for Dirichlet series. Studia Mathematica, to appear. [23] Landau E.Über die Multiplikation Dirichlet'scher Reihen. Rendiconti di Palermo, 1907, 24:81-160 [24] Maurizi B. Construction of an ordinary Dirichlet series with convergence beyond the Bohr strip. Missouri J Math Sci, 2013, 25(2):110-133 [25] Maurizi B, Queffélec H. Some remarks on the algebra of bounded Dirichlet series with square-summable coefficients. J Fourier Anal Appl, 2010, 16(5):676-692 [26] Nehari Z. On bounded bilinear forms. Ann of Math, 1957, 65:153-162 [27] Ortega-Cerdà J, Seip K. A lower bound in Nehari's theorem on the polydisk. J Anal Math, 2012, 118(1):339-342 [28] Queffélec H. Propriétés presque sûres et quasi-sûres des séries de Dirichlet et des produits d'Euler. Canad J Math, 1980, 32(3):531-558 [29] Queffélec H. Espaces de séries de Dirichlet et leurs opérateurs de composition. Ann Math Blaise Pascal, 2015, 22(S2):267-344 [30] Queffélec H, Queffélec M. Diophantine Approximation and Dirichlet Series. Second ed. Texts and Readings in Mathematics 80, Hindustan Book Agency. Springer, 2020 [31] Queffélec H, Seip K. Approximation numbers of composition operators on the H2 space of Dirichlet series. J Funct Anal, 2015, 268(6):1612-1648 [32] Titchmarsh E C. The Theory of the Riemann Zeta-Function. Second ed. Oxford Science Publications, 1986 [33] Weber M. Private communication. Lille, 2016 [34] Yu Jiarong. Some quasisure properties of exponential and power series. Sci Sinica Ser A, 1983:585-594 [35] Yu Jiarong. Random power series and exponential series. Adv in Math (China), 1990, 19(3):257-264 |