Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (3): 975-1002.doi: 10.1007/s10473-022-0310-x
• Articles • Previous Articles Next Articles
Edcarlos D. SILVA, Jefferson S. SILVA
Received:
2020-09-09
Revised:
2020-10-14
Published:
2022-06-24
Contact:
Edcarlos D. SILVA,E-mail:edcarlos@ufg.br
E-mail:edcarlos@ufg.br
Supported by:
CLC Number:
Edcarlos D. SILVA, Jefferson S. SILVA. QUASILINEAR EQUATIONS USING A LINKING STRUCTURE WITH CRITICAL NONLINEARITIES[J].Acta mathematica scientia,Series B, 2022, 42(3): 975-1002.
[1] Alves C O, Wang Y, Shen Y. Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J Differential Equations, 2015, 259:318-343 [2] Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN. Comm Part Diff Eq, 1995, 20:1725-1741 [3] de Bouard A, Hayashi N, Saut J C. Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Comm Math Phys, 1997, 189:73-105 [4] Brull L, Lange H. Solitary waves for quasilinear Schrödinger equations. Expo Math, 1986, 4:278-288 [5] Chen X L, Sudan R N. Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys Rev Lett, 1993, 70:2082-2085 [6] Colin M, Jeanjean L. Solutions for a quasilinear Schrödinger equation:a dual approach. Nonlinear Anal, 2004, 56:213-226 [7] Del Pino M, Felmer P. Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc Var Partial Differential Equations, 1996, 4:121-137 [8] Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J Differential Equations, 2015, 258:115-147 [9] Furtado M F, Silva E D, Silva M L. Quasilinear Schrödinger equations with asymptotically linear nonlinearities. Adv Nonlinear Stud, 2014, 14:671-686 [10] Furtado M F, Silva E D, Silva M L. Quasilinear elliptic problems under asymptotically linear conditions at infinity and at the origin. Z Angew Math Phys, 2015, 66:277-291 [11] Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys, 1980, 37:83-87 [12] Kosevich A M, Ivanov B, Kovalev A S. Magnetic solitons. Phys Rep, 1990, 194:117-238 [13] Kurihura S. Large-amplitude quasi-solitons in superfluid films. J Phys Soc Japan, 1981, 50:3263-3267 [14] Landau L D, Lifschitz E M. Quantum Mechanics, Non-relativistic Theory. Institute of Physical Problems URSS, Academy of Sciences, 1958 [15] Li Q, Wu X. Existence, multiplicity and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J Math Phys, 2017, 58:041501 [16] Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:109-145; 223-283 [17] Litvak A G, Sergeev A M. One dimensional collapse of plasma waves. JETP Lett, 1978, 27:517-520 [18] Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations I. Proc Amer Math Soc, 2002, 131:441-448 [19] Liu J Q. Wang Y Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations II. J Differential Equations, 2003, 187:473-493 [20] Liu J Q, Wang Y Q, Wang Z Q. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29:879-901 [21] Liu X, Liu J, Wang Z Q. Ground states for quasilinear Schrödinger equations with critical growth. Calc Var Partial Differential Equations, 2013, 46:641-669 [22] Liu S, Zhou J. Standing waves for quasilinear Schrödinger equations with indefinite potentials. Journal of Differential Equations, 2018, 265:3970-3987 [23] Makhankov V G, Fedyanin V K. Non-linear effects in quasi-one-dimensional models of condensed matter theory. Physics Reports, 1984, 104:1-86 [24] Nakamura A. Damping and modification of exciton solitary waves. J Phys Soc Jpn, 1977, 42:1824-1835 [25] do Ó J M, Severo U B. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun Pure Appl Anal, 2009, 8:621-644 [26] do Ó J M, Miyagaki O H, Soares S H. Soliton solutions for quasilinear Schrödinger equations with critical growth. J Differential Equations, 2010, 248:722-744 [27] Poppenberg M, Schmitt K, Wang Z Q. On the existence of soliton solutions to quasilinear Schrödinger equations. Calc Var Partial Differential Equations, 2002, 14:329-344 [28] Rabinowitz P. Minimax methods in critical point theory with applications to differential equations. CBMS Reg Conf Ser Math. Vol 65. Providence RI:Amer Math Soc, 1986 [29] Rabinowitz P. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43:270-291 [30] Schechter M, Tintarev K. Pairs of critical points produced by linking subsets with applications to semilinear elliptic problems. Bull Soc Math Belg Ser B, 1992, 44:249-261 [31] Schechter M. Linking methods in critical point theory. Boston, MA:Birkhäuser Boston, Inc, 1999 [32] Schechter M. A variation of the mountain pass lemma and applications. J London Math Soc, 1991, 44(2):491-502 [33] Silva E A B. Linking theorems and applications to semilinear elliptic problems at resonance. Nonlinear Anal, 1991, 16:455-477 [34] Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Analysis, 2010, 72:2935-2949 [35] Silva E A B, Vieira G F. Quasilinear asymptotically periodic Schrödinger equations with critical growth. Cal Var, 2010, 39:1-33 [36] Silva E D, Silva J S. Quasilinear Schrödinger equations with nonlinearities interacting with high eigenvalues. J Math Phys, 2019, 60:081504 [37] Silva E D, Silva J S. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete Continuous Dynamical Systems-A, 2020, 40(9):5441-5470 [38] Souto M A S, Soares S H M. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Commun Pure Appl Anal, 2013, 12(1):99-116 [39] Willem M. Minimax Theorems. Basel, Berlin:Birkhäuser Boston, 1996 |
[1] | Lifu WENG, Xu ZHANG, Huansong ZHOU. MOUNTAIN-PASS SOLUTION FOR A KIRCHHOFF TYPE ELLIPTIC EQUATION [J]. Acta mathematica scientia,Series B, 2025, 45(2): 385-400. |
[2] | Peng Chen, Longjiang Gu, Yan Wu. MULTIPLE SOLUTIONS FOR A HAMILTONIAN ELLIPTIC SYSTEM WITH SIGN-CHANGING PERTURBATION [J]. Acta mathematica scientia,Series B, 2025, 45(2): 602-614. |
[3] | Chengcheng Wu, Linjie Song. ON RADIALITY OF MINIMIZERS TO $L^2$ SUPERCRITICAL SCHRÖDINGER POISSON EQUATIONS WITH GENERAL NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2025, 45(2): 684-694. |
[4] | Bin Chen, Yongshuai Gao, Yujin Guo, Yue Wu. MINIMIZERS OF $L^2$-SUBCRITICAL VARIATIONAL PROBLEMS WITH SPATIALLY DECAYING NONLINEARITIES IN BOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 984-996. |
[5] | Yuxi Meng, Xiaoming He. MULTIPLICITY OF NORMALIZED SOLUTIONS FOR THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEM WITH DOUBLY CRITICAL GROWTH [J]. Acta mathematica scientia,Series B, 2024, 44(3): 997-1019. |
[6] | Ke JIN, Ying SHI, Huafei XIE. THE LIMITING PROFILE OF SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS WITH A SHRINKING SELF-FOCUSING CORE [J]. Acta mathematica scientia,Series B, 2024, 44(2): 583-608. |
[7] | Jin DENG, Benniao LI. A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRÖDINGER SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1743-1764. |
[8] | Huirong PI, Yong ZENG. EXISTENCE RESULTS FOR THE KIRCHHOFF TYPE EQUATION WITH A GENERAL NONLINEAR TERM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2063-2077. |
[9] | Narimane AISSAOUI, Wei LONG. POSITIVE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH PERTURBED SOURCE TERMS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1817-1830. |
[10] | Yujuan CHEN, Lei WEI, Yimin ZHANG. THE ASYMPTOTIC BEHAVIOR AND SYMMETRY OF POSITIVE SOLUTIONS TO p-LAPLACIAN EQUATIONS IN A HALF-SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2149-2164. |
[11] | Wenqing WANG, Anmin MAO. THE EXISTENCE AND NON-EXISTENCE OF SIGN-CHANGING SOLUTIONS TO BI-HARMONIC EQUATIONS WITH A p-LAPLACIAN [J]. Acta mathematica scientia,Series B, 2022, 42(2): 551-560. |
[12] | Salvatore LEONARDI, Nikolaos S. PAPAGEORGIOU. ARBITRARILY SMALL NODAL SOLUTIONS FOR PARAMETRIC ROBIN (p,q)-EQUATIONS PLUS AN INDEFINITE POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(2): 561-574. |
[13] | Zhenhai LIU, Nikolaos S. PAPAGEORGIOU. ANISOTROPIC (p,q)-EQUATIONS WITH COMPETITION PHENOMENA [J]. Acta mathematica scientia,Series B, 2022, 42(1): 299-322. |
[14] | Nikolaos S. PAPAGEORGIOU, Nikolaos S. PAPAGEORGIOU, Calogero VETRO. ON NONCOERCIVE (p,q)-EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1788-1808. |
[15] | Yongsheng JIANG, Na WEI, Yonghong WU. MULTIPLE SOLUTIONS FOR THE SCHRÖDINGER-POISSON EQUATION WITH A GENERAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2021, 41(3): 703-711. |
|