| [1] Agrawal G P. Nonlinear Fiber Optics.Cambridge: Academic Press, 2007<br />
[2] Ardila A H, Dinh V D. Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation. Z Angew Math Phys, 2020, <b>71</b>(3): Art 79<br />
[3] Baym G, Pethick C J. Ground state properties of magnetically trapped Bose-condensed rubidium gas. Phys Rev Lett, 1996, <b>76</b>(1): 6-9<br />
[4] Cao D M, Peng S J, Yan S S.Singularly Perturbed Methods for Nonlinear Elliptic Problems. New York: Cambridge University Press, 2021<br />
[5] Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm Math Phys, 1982, <b>85</b>(4): 549-561<br />
[6] Chen J Q. On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient. Czechoslov Math J, 2010, <b>60</b>(3): 715-736<br />
[7] Combet V, Genoud F. Classification of minimal mass blow-up solutions for an $L^2$ critical inhomogeneous NLS. J Evol Equ, 2016, <b>16</b>(2): 483-500<br />
[8] De Bouard A, Fukuizumi R. Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Ann Henri Poincaré, 2005, <b>6</b>(6): 1157-1177<br />
[9] Deng Y B, Guo Y J, Lu L. On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions. Calc Var Partial Differ Equ, 2015, <b>54</b>(1): 99-118<br />
[10] Deng Y B, Guo Y J, Lu L. Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations. J Math Phys, 2018, <b>59</b>(1): 011503<br />
[11] Dinh V D. Blow up of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. Nonlinear Anal, 2018, <b>174</b>: 169-188<br />
[12] Farah L G. Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J Evol Equ, 2016, <b>16</b>(1): 193-208<br />
[13] Gao Y S, Guo Y J, Wu S. Minimizers of $L^2$-subcritical inhomogeneous variational problems with a spatially decaying nonlinearity. Comm Pure Appl Anal, 2023, <b>22</b>(1): 304-317<br />
[14] Genoud F. A uniqueness result for $\Delta u-\lambda u+V(x)u^p=0$ on $\mathbb{R}^2$. Adv Nonlinear Stud, 2011, <b>11</b>(3): 483-491<br />
[15] Genoud F, Stuart C A. Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin Dyn Syst, 2008, <b>21</b>(1): 137-186<br />
[16] Gilbarg D, Trudinger N S.Elliptic Partial Differential Equations of Second Order. Belin: Springer, 1997<br />
[17] Guo Y J, Luo Y, Zhang Q. Minimizers of mass critical Hartree energy functionals in bounded domains. J Differ Equ, 2018, <b>265</b>(10): 5177-5211<br />
[18] Guo Y J, Seiringer R. On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett Math Phys, 2014, <b>104</b>(2): 141-156<br />
[19] Guo Y J, Wang Z Q, Zeng X Y, Zhou H S. Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, <b>31</b>(3): 957-979<br />
[20] Guo Y J, Zeng X Y, Zhou H S. Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. Ann Inst H Poincaré Anal Non Liné$aire, 2016, <b>33</b>(3): 809-828<br />
[21] Han Q, Lin F H.Elliptic Partial Differential Equations. 2nd ed. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York: Amer Math Soc, 2011<br />
[22] Lieb E H, Loss M. Analysis. Providence, RI: Amer Math Soc, 2001<br />
[23] Lions P L. The concentration-compactness principle in the caclulus of variations. The locally compact case, Part I & II. Ann Inst H Poincaré Anal Non Linéaire, 1984, <b>1</b>: 109-145; 223-283<br />
[24] Liu C S, Tripathi V K. Laser guiding in an axially nonuniform plasma channel. Phys Plasmas, 1994, <b>1</b>(9): 3100-3103<br />
[25] Luo X. Stability and multiplicity of standing waves for the inhomogeneous NLS equation with a harmonic potential. Nonlinear Anal: Real World Appl, 2019, <b>45</b>: 688-703<br />
[26] Maeda M. On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv Nonlinear Stud, 2010, <b>10</b>(4): 895-925<br />
[27] Saanouni T. Global well-posedness and instability of an inhomogeneous nonlinear Schrödinger equation. Med J Math, 2015, <b>12</b>(2): 387-417<br />
[28] Saanouni T. Remarks on the inhomogeneous fractional nonlinear Schrödinger equation. J Math Phys, 2016, <b>57</b>(8): 081503<br />
[29] Zhang J. Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z Angew Math Phys, 2000, <b>51</b>(3): 498-503 |