|    
[1] Ben-Bassat O. Mirror symmetry and generalized complex manifolds. math.AG/0405303 
 
[2] Bott R, Tu L. Differential forms in algebraic topology//Graduates Texts in Mathematics, 82. New York, 
Berlin: Springer-Verlag, 1982 
 
[3] Chiantese S, Gmeiner F, Jeschek C. Mirror symmetry for topological sigma models with generalzed K¨ahler 
geometry. hep-th/0408169 
 
[4] Eguchi T, Yang S -K. N = 2 superconformal models as topological field theories. Modern Phys Lett A, 
1990, 5(21): 1639–1701 
 
[5] Gualtieri M. Generalized complex geometry  
[D]. Oxford: Oxford University, 2003. math.DG/0401221 
 
[6] Hitchin N. Generalized Calabi-Yau manifolds. math.DG/0209099 
 
[7] Kac V G. Vertex Algebra for Beginners. University Lecture Series, 10. 2nd edition. Providence, RI: 
American Mathematical Society, 1938 
 
[8] Kapustin A, Li Y. Topological sigma-models with H-flux and twisted generalized complex manifolds. 
hep-th/0407249 
 
[9] Kapustin A, Li Y. Open String BRST cohomology for generalized complex branes. hep-th/0501071 
 
[10] Malikov F, Schechtman V, Vaintrob A. Chiral de Rham complex. Comm Math Phys, 1999, 204(2): 
439–473. math.AG/9803041 
 
[11] Pestun V. Topological strings in generalized complex space. Adv Theor Math Phys, 2007, 11(3): 399–450 
 
[12] Strominger A, Yau S -T, Zaslow E. Mirror symmetry is T-Duality. Nucl Phys B, 1996, 479: 243–259, 
hep-th/9606040 
 
[13] Witten E. Mirror manifolds and topological field theory//Yau S T, ed. Essays on Mirror Manifolds, Hong 
Kong: International Press, 1992: 120–158, hep-th/9112056 
 
[14] Zhou J. Vertex algebra in differential geometry I. math.DG/0006201 
 
[15] Zhou J. Lectures on vertex operator algebra. Lecture given at summer school at Zhejiang University, 
Hangzhou, July, 2002 
 
[16] Zucchini R. A Sigma model field theoretical realization of Hitchin’s generalized geometry. hep-th/0409181
  |