[1] Kirillov A A. Infinite Dimensional Lie Groups: their Orbits, Invariants and Representations. The Geometry
of Moments, Lecture Notes Math, 1982,970: 101-123
[2] Witten E. Coadjoint Orbits of the Virasoro Group. Communications in Mathematical Physics, 1988, 114:
1-53
[3] Bott R. On the Characteristic Classes of Groups of diffeomorphisms. Enseign Math, 1977, 23(3/4):209-220
[4] Segal G. Unitary Representations of Some infinite Dimensional Groups. Communications in Mathematical
Physics, 1981, 80: 301-342
[5] Segal G. The Geometry of the KdV Equation. International Journal ofModern Physics A, 1991, 16(6):2859-
2869
[6] Pickrell D. Invariant Measures for Unitary Forms Associated to Kac-Moody Lie Algebra. Memoirs of the
A M S, 2000, 693
[7] Pickrell D. On The Action of the Group of Diffeomorphisms of a Surface on Sections of the Determinant
Line Bundle. Pacific Journal of Mathematics, 2000, 193(1):177-199
[8] Dai J, Pickrell D. The orbit method and the Virasoro extension of Diff+(S1). I Orbital integrals. J
Geom Phys, 2003, 44(4): 623-653
[9] Goldman W M. Topological Components of Spaces of repres entations. Invent Math, 1988,93: 557-607
[10] Herman M. Sur la Conjugaison Diff´erentiable des Diff´eomorphisms du Cercle ´a des Rotations. Publ Math
I H E S, 19179, 49:5-234
[11] Kac V G, Raina H K. Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie
Algebras. World Sicentific, 1987
[12] Lazutkin V F, Pankratova T F. Normal Forms and Versal Deformations for Hill’s Equations. Plenum
Publishing Corporation, 1976. 306-311
[13] Bien F. On the Structure and the Represnetations of DiffS1.
[14] Milnor J W. On the Exsitence of a Connection with Zero Curvature. Comment Math Helv, 1958, 32:
215-223
[15] Dai J. Conjugacy Classes, Coadjoint Orbits and Characters of Diff+S1.
[PhD dissertation]. The Uni-
versity of Arizona, Tucson, AZ, 85721, USA, 2000
[16] Magnus W, Winkler S. Hill’s Equation. New York: Dover Publications, Inc, 1979
|