| 
                            			 
                              			
                              		 | 
                            		
																						JONES TYPE C*-BASIC CONSTRUCTION IN NON-EQUILIBRIUM HOPF SPIN MODELS*
											                            			 
						
                            			 
                            				Xiaomin WEI, Lining JIANG
                            			 
                              			Acta mathematica scientia,Series B. 2023, 43 (6): 
																					2573-2588. 
																														DOI: 10.1007/s10473-023-0615-4
																				
                              			 
                              			
                                		
			                            	Let H be a finite dimensional Hopf ${C}^*$-algebra, and let K be a Hopf *-subalgebra of H. Considering that the field algebra $\mathscr{F}_{K}$ of a non-equilibrium Hopf spin model carries a $D(H,K)$-invariant subalgebra $\mathscr{A}_{K}$, this paper shows that the ${C}^*$-basic construction for the inclusion $\mathscr{A}_{K} \subseteq \mathscr{F}_{K}$ {can be expressed as} the crossed product ${C}^*$-algebra $\mathscr{F}_{K} \rtimes D(H,K)$. Here, $D(H,K)$ is a bicrossed product of the opposite dual $\widehat{H^{op}}$ and $K$. Furthermore, the natural action of $\widehat{D(H,K)}$ on $D(H,K)$ gives rise to the iterated crossed product $\mathscr{F}_{K} \rtimes D(H,K) \rtimes \widehat{D(H,K)}$, which coincides with the ${C}^*$-basic construction for the inclusion $\mathscr{F}_{K} \subseteq \mathscr{F}_{K} \rtimes D(H,K)$. In the end, the Jones type tower of field algebra $\mathscr{F}_{K}$ is obtained, and the new field algebra emerges exactly as the iterated crossed product.
			                             
                              			
                              					                              					                              					                              					References | 
	                              					                              					                              				Related Articles | 
	                              				Metrics
                              				                              			
                              			
										                              		 |