[1] Bendikov A, Grigor'yan A, Pittet C, et al. Isotropic Markov semigroups on ultra-metric spaces. Russian Mathematical Surveys, 2014, 69(4):589-680 [2] Bendikov A, Grigor'yan A, Hu E, et al. Heat kernels and non-local Dirichlet forms on ultrametric spaces. Ann Scuola Norm Sup Pisa, e-prints, 2019 [3] Carlen E A, Kusuoka S, Stroock D W, Upper bounds for symmetric Markov transition functions. Ann Inst H Poincaré Probab Statist, 1987, 23:245-287 [4] Chen Z Q, Kim P, Kumagai T, Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 2008, 342:833-883 [5] Davies E B. Explicit constants for Gaussian upper bounds on heat kernels. Amer J Math, 1987, 109:319-333 [6] Fukushima M, Oshima Y, Takeda M. Dirichlet Forms and Symmetric Markov Processes. vol. 19 of de Gruyter Studies in Mathematics. Berlin:Walter de Gruyter & Co, 2011 [7] Grigor'yan A, Hu E, Hu J. Lower estimates of heat kernels for non-local Dirichlet forms on metric measure spaces. J Funct Anal, 2017, 272:3311-3346 [8] Grigor'yan A, Hu E, Hu J. Two-sided estimates of heat kernels of jump type Dirichlet forms. Adv Math, 2018, 330:433-515 [9] Grigor'yan A, Hu J, Lau K S. Comparison inequalities for heat semigroups and heat kernels on metric measure spaces. J Funct Anal, 2010, 259:2613-2641 [10] Grigor'yan A, Hu J, Lau K S. Estimates of heat kernels for non-local regular Dirichlet forms. Trans Amer Math Soc, 2014, 366:6397-6441 [11] Hu E. Lower inequalities of heat semigroups by using parabolic maximum principle. Acta Math Sci, 2012, 32B(4):1349-1364 [12] Hu J, Li X. The Davies method revisited for heat kernel upper bounds of regular Dirichlet forms on metric measure spaces. Forum Math, 2018, 30:1129-1155 [13] Murugan M, Saloff-Coste L. Davies' method for anomalous diffusions. Proc Amer Math Soc, 2017, 145:1793-1804 [14] Yang M. Hent kernel estimates on Julia sets. Acta Math Sci, 2017, 37B(5):1399-1414 |