[1] Belfadli R, Boulanba L, Mellouk M. Moderate deviations for a stochastic Burgers equation. arXiv:1807.09117 [2] Bousé M, Dupuis P. A variational representation for certain functionals of Brownian motion. Ann Probab, 1998, 26:1641-1659 [3] Budhiraja A, Dupuis P. A variational representation for positive functional of infnite dimensional Brownian motions. Probab Math Statist, 2000, 20:39-61 [4] Budhiraja A, Dupuis P, Ganguly A. Moderate deviation principle for stochastic differential equations with jumps. Ann Probab, 2016, 44:1723-1775 [5] Budhiraja A, Dupuis P, Maroulas V. Large deviations for infinite dimensional stochastic dynamical systems. Ann Probab, 2008, 36:1390-1420 [6] Cardon-Weber C. Large deviations for Burgers' type SPDE. Stochastic Process Appl, 1999, 84:53-70 [7] Dembo A, Zeitouni O. Large Deviations Techniques and Applications. Applications of Mathematics 38. 2nd ed. Berlin Heidelberg:Springer-Verlag, 1998 [8] Dong Z, Xiong J, Zhai J, Zhang T. A moderate deviation principle for 2-D stochastic Navier-Stokes equations drive Lévy noises. J Funct Anal, 2017, 272(1):227-254 [9] Foondun M, Setayeshgar L. Large deviations for a class of semilinear stochastic partial differential equations. Statist Probab Lett, 2017, 121:143-151 [10] Hall P, Schimek M. Moderate-deviation-based inference for random degeneration in paired rank lists. J Amer Statist Assoc, 2012, 107:661-672 [11] Gao F. Moderate deviations for a nonparametric estimator of sample coverage. Ann Statist, 2013, 41:641-669 [12] Gao F, Wang S. Asymptotic behaviors for functionals of random dynamical systems. Stoch Anal Appl, 2016, 34(2):258-277 [13] Gao F. Small perturbation cramer methods and moderate deviations for Markov processes. Acta Math Sci, 1995, 15(4):394-405 [14] Gao F, Jiang H, Wang B. Moderate deviations for parameter estimators in fractional Ornstein-Uhlenbeck process. Acta Math Sci, 2010, 30B(4):1125-1133 [15] Gyöngy I. Existence and uniqueness results for semilinear stochastic partial differential equations. Stochastic Process Appl, 1998, 73:271-299 [16] Ichikawa A. Some inequalities for martingales and stochastic convolutions. Stochastic Anal Appl, 1986, 4:329-339 [17] Li Y, Wang R, Yao N, Zhang S. A moderate deviation principle for stochastic Volterra equation. Statist Probab Lett, 2017, 122(10):79-85 [18] Klebaner F, Liptser R. Moderate deviations for randomly perturbed dynamical systems. Stochastic Process Appl, 1999, 80:157-176 [19] Setayeshgar L. Large deviations for a stochastic Burgers' equation. Commun Stoch Anal, 2014, 8:141-154 [20] Walsh J. An introduction to stochastic partial differential equations//Hennequin P L, eds. École d'été de Probabilités St. Flour XIV. Lect Notes Math, Vol 1180. Berlin:Springer, 1986 [21] Wang R, Zhai J, Zhang, T. A moderate deviation principle for 2-D stochastic Navier-Stokes equations. J Differential Equations, 2015, 258:3363-3390 [22] Wang R, Zhang T. Moderate deviations for stochastic reaction-diffusion equations with multiplicative noise. Potential Anal, 2015, 42:99-113 [23] Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl, 2007, 328:1075-1081 |